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Abstract

The introduction of an unremunerated retail central bank digital currency (CBDC)

is currently under consideration by several central banks. Motivated by the decline

in transactional cash usage and the increase in online sales in the UK, this paper

provides a theoretical framework to study the underlying drivers of these trends

and the welfare implications of introducing an unremunerated retail CBDC. A cash

credit model with physical and digital retail sectors is developed, with endogenous

entry of firms and directed consumer search. Calibrating to UK data between 2010

and 2022 the model suggests that there are positive welfare gains from introducing

an unremunerated retail CBDC, but these have likely declined over time.
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1 Introduction

The introduction of a retail central bank digital currency (CBDC) is currently being

considered by the major central banks. Current proposals by the Bank of England and the

ECB have suggested that should they decide to issue a CBDC, it would be unremunerated.

This limits a lot of the financial stability concerns of issuing a CBDC, but also limits the

potential benefits. An obvious question is if CBDC offers the same rate of return as cash,

how does it differ from cash, and what is the motivation for introducing a CBDC?

One motivation for introducing a CBDC is to address the declining use of cash. Figure

1 plots data from UK Finance’s UK Payment Markets Report showing the number of

payments made using cash, debit cards, and credit cards. The figure shows that the

number of transactions in the UK using cash has decreased significantly since 2008. This

decline in the number of cash transactions has been mirrored by the increase in debit card

and, to a lesser extent, credit card transactions. As cash is currently the only form of

central bank money directly used as a means of payment by households there is concern

that should this trend towards a cashless society continue, cash will no longer be able to

underpin confidence in private money, what Panetta (2021) refers to as the role of central

bank money as monetary anchor.

A related trend is that an increasing number of retail transactions are taking place online,

where cash cannot typically be used as a means of payment. Figure 2 shows the share of

internet sales as a percentage of total retail sales in the UK between January 2008 and

July 2023. The chart captures the rapid increase in the share of online transactions from

less than 5% to more than 25%. Even looking through a spike in the proportion of retail

sales during the COVID-19 pandemic period, the series shows a steady upward trend.

Central banks offer several rationales for the introduction of a retail CBDC, with the

emphasis varying across jurisdictions. One key rationale is to ensure the continued avail-

ability and utility of central bank money in a modern, digital economy. Additionally,

a CBDC can enhance financial inclusion by providing access to digital financial services

for unbanked or underbanked populations. Furthermore, a CBDC has the potential to

foster innovation and competition in the payments sector, which could reduce costs and

improve efficiency for consumers and businesses.

However, it is not immediately clear whether the increase in online sales and decline in

cash usage observed in the data strengthens the case for the issuance of a retail CBDC as a

digital fiat money. The underlying drivers of this trend are likely to be an important factor

in evaluating the benefits of issuing a CBDC. One possible scenario is that technological

improvements in online retail are the primary driver of the shift to online sales and
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precipitating a decline in cash usage. Here, the introduction of a retail CBDC is likely

to lead to significant welfare gains should it improve competition and efficiency in digital

payments. An alternative scenario is that the decline in cash use and the increase in

online sales is driven by improvements in digital payments technology. In this case, the

introduction of a retail CBDC may have less pronounced welfare gains as the private

sector is already providing much of the possible benefits.

The main focus of this paper is to understand the drivers behind the decline in cash usage

and the increase in online sales and the implications of this for the introduction of a retail

CBDC. This paper builds a theoretical framework that is able to model both the decline

in cash usage and the increase in online retail sales while suggesting a mechanism through

which the issuance of a CBDC could lead to aggregate welfare gains. Importantly, the

model allows for several possible drivers of these trends with conflicting welfare implica-

tions for the introduction of a CBDC. To provide evidence on which of these drivers is

most empirically consistent, the model is calibrated to UK data between 2010 and 2022.

The model developed in this paper is a cash-credit monetary model based on the frame-

work developed by Lagos and Wright (2005) and Rocheteau and Wright (2005). Specif-

ically, it builds on the recent paper by Lagos and Zhang (2022) who showed that the

moneyless limit differs from a non-monetary model, as money acts as a constraint on

the market power of financial intermediaries by acting as an outside option. This paper

adopts this mechanism but extends the model in three key ways. First, I assume that

there are two distinct firm types, digital and physical, which differ in the means of pay-

ment they are able to accept. Money is usable only in physical, face-to-face transactions

and not in digital transactions. Second, I allow for endogenous firm entry into these two

sectors, which is made possible by introducing search frictions and solving for the com-

petitive search equilibrium. Allowing for endogenous firm entry allows the model to study

different possible channels for the increasing trend in online sales identified by Figure 2

and the different welfare implications they have for the introduction of a CBDC. Finally,

I allow consumers to choose between searching in the digital sector and searching in the

physical sector. Consumers thus respond endogenously to changes in the relative attrac-

tiveness of the two sectors. For a detailed review of the competitive search equilibrium

used in this paper, see Wright et al. (2021).

This paper has two key results. First, the paper finds that there are welfare gains from

the introduction of CBDC. The welfare gains occur because, in the absence of a CBDC,

the model suggests that the entry of online retailers is inefficiently low. This stems from

physical retailers having a competitive advantage: their ability to accept cash, which

constrains the market power of financial intermediaries and lowers the intermediation

fees that physical retailers are required to pay to intermediaries. As online retailers are
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unable to accept cash as a means of payment, they face larger intermediation fees in

order to access financial markets than physical retailers. Introducing a CBDC levels the

playing field in the sense that online retailers have the same outside option as physical

retailers, leading to efficient entry by both online retailers and physical retailers. Second,

the paper finds that the welfare gains of introducing a CBDC have declined between 2010

and 2022. Calibrating the model to UK data suggests that the fall in cash usage and

rise in online sales are driven primarily by improvements in digital payments rather than

productivity increases in digital retail. As a consequence, the benefits of introducing a

CBDC are lower.

There is extensive literature that discusses the welfare implications of introducing a

CBDC, although, as pointed out by Bindseil and Senner (2024), much of this focusses

on a remunerated CBDC rather than an unremunerated one. For example, Barrdear and

Kumhof (2022) find that a countercyclical remuneration rate rule for CBDC can con-

tribute to stabilising the business cycle, while Bordo (2021) suggests that a remunerated

CBDC can strengthen the transmission of monetary policy. This paper emphasises a pos-

sible benefit of an unremunerated CBDC, which can be seen as complementary to papers

that highlight the potential risks of introducing a CBDC such as Fernández-Villaverde

et al. (2021) that consider the increased risk of bank runs, especially in cases where the

CBDC is remunerated.

Other papers such as Ferrari Minesso et al. (2022), Abad et al. (2024) and Bidder et al.

(2024) study unremunerated CBDC by assuming that a CBDC is an imperfect substitute

for other forms of money, such as cash and bank deposits. In these papers, the substi-

tutability between different forms of money is fixed. In this paper, the substitutability

between different forms of money depends on the ratio of digital and physical firms in the

economy, which is endogenous. Although this paper focusses on digital transactions as a

way to differentiate between CBDC and cash, there are other possible alternatives. For

example, Burlon et al. (2022) differentiates between cash and CBDC by assuming that

cash has higher storage costs than a potential CBDC.

Several recent papers have studied the introduction of a CBDC using money search

models in the style of Lagos and Wright (2005). An example is Assenmacher et al. (2023)

who study the effects of a remunerated CBDC in a New Keynesian New Monetarist

model along the lines of Aruoba and Schorfheide (2011). Unlike this paper, they do

not distinguish between physical money (cash) and digital money (CBDC). Williamson

(2022) uses a similar money search framework to this paper while cash and CBDC are

differentiated by the level of privacy they offer. Closer to this paper is the recent work

of Jiang and Zhu (2021), Chiu et al. (2023), and Keister and Sanches (2023) who study

the impact of a CBDC using money-search models that have distinct types of sellers
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Figure 1: Total Number of UK Payments (in billions) by Method of Payment.
Source: UK Finance, UK Payment Markets Report. https://www.ukfinance.org.uk.
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Figure 2: Value of Internet Sales as Percentage of Total Value of UK Retail Sales (sea-
sonally adjusted).
Source: UK ONS, Retail Sales Index.
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that can accept different methods of payment. Keister and Sanches (2023) consider

CBDC’s substitutability with other means of payment as a design choice. Specifically,

they distinguish between a cash-like CBDC that only competes with cash based payments,

a deposit-like CBDC which competes with bank deposits, and a universal CBDC which

competes with bank deposits and cash payments. A key modelling difference in this

paper is that search frictions are introduced and allow for both endogenous entry of firms

and consumers into the digital and physical markets. This allows the model to study the

underlying drivers behind the decline in cash usage and the increase in online retail.

This is not the first paper to consider the impact of a declining trend in cash use. Jiang

and Shao (2020) not only document the decline in cash usage, but also suggest an answer

to the ‘cash paradox’, that is why cash usage has not declined as much as might be

expected. Khiaonarong and Humphrey (2022) suggest that the decline in cash usage is

linked to a generational shift in payment preferences and explore the implications of this

trend for CBDC adoption. A paper closer in spirit to this one is Chiu et al. (2023), who

study the impact of an exogenous shift toward sellers that do not accept cash. As I allow

for endogenous entry of firms, this paper is able to show that the welfare implications of

introducing a CBDC may depend on the underlying factors driving the declining trend

in cash usage.

The remainder of this paper is organised as follows. Section 2 presents the model. Section

3 describes the equilibrium and discusses the impact of introducing a CBDC. Section 4

calibrates the model to UK data and studies the effect of introducing a CBDC. Section

5 concludes.

2 The Model

In this section, I build a cash-credit model based on the framework of Lagos and Zhang

(2022) with two innovations. First, the model features two distinct types of retailer, a

physical retailer and a digital retailer. The retailers are distinguished in the means of

payment they are able to accept. Physical retailers are able to accept cash as a means

of payment, whereas digital retailers cannot. Second, consumers are subject to search

frictions and choose between physical and digital retailers in a directed search setting

along the lines of Rocheteau and Wright (2005).
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2.1 Environment

Time is discrete, lasts forever, and is represented by a sequence indexed by t ∈ T ≡
{0, 1, . . . }. There are three types of agents, denoted by i ∈ {c, f, b}; a measure 1 of

consumers, c, a measure 1 of financial intermediaries b, and firms, f . Firms are divided

into two permanent types: physical retailers and digital retailers, denoted by p and d,

respectively. There is a measure N̄ of potential firms that choose which sector to enter

at the beginning of t subject to an entry cost. Consumers and financial intermediaries

live forever, while firms live only for one period.

The discount factor from the current period to the next is β ∈ (0, 1). Each period is

divided into two stages: first, a decentralised frictional trading stage (DM), and second,

a centralised frictionless settlement stage (CM). There are two nonstorable goods: y in

the DM and x in the CM.

At the beginning of period t there is a quantity Mt of money. Money is an intrinsically

useless financial asset issued by the monetary authority. Money is perfectly divisible, and

agents can hold any non-negative amount. In the baseline model, money is physical and

can only be used as a medium of exchange by physical retailers. In this sense, money

can be thought of as being banknotes that cannot be used in transactions with online

retailers. Later, I consider the possibility that the monetary authority issues digital cash,

such as an unremunerated central bank digital currency (CBDC) that can be used by

both digital retailers and physical retailers. The initial money stock, M0 ∈ R++, is

taken as given and distributed uniformly among consumers. The monetary authority is

assumed to constantly adjust the money supply through lump-sum transfers or taxes to

consumers in the CM stage of every period so that the law of motion of the money supply

is Mt+1 = µMt with µ ∈ R++.

Also, at the beginning of period t, firms choose which sector j ∈ {p, d} to enter subject

to a free entry condition. I assume that firms face a cost of entering a sector η (Nf,j)

is increasing in the mass of firms that enter each sector, Nf,j, with η′ > 0, η′′ ≥ 0 and

η (0) = 0. I assume that the mass of potential entrants is large enough that in equilibrium∑
j Nf,j ≪ N̄ and the entry of firms drives the expected profits in both sectors to zero.

Firms that enter a sector at the beginning of the period begin with no assets and fund

their cost of entry with bonds issued to a financial intermediary which they commit to

repay through x in the CM.

In the first stage, consumers obtain utility from consuming y of the DM good which can

only be produced by firms. The utility consumers get from consumption in the DM is

u (y), with u′ (0) = ∞, u′ > 0, u′′ < 0 and u (0) = 0. Firm j’s marginal cost of producing

y , which may depend on their type, is denoted by κj > 0.
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In the second stage, agents of all types consume the CM good, x, and are able to supply

labour, h, which can be used to produce good x through a linear production technology.

All agents obtain utility vi (x) from consuming x of the CM good, with v′i (0) = ∞, v′i > 0,

v′′i < 0 and there exists x∗
i > 0 such that v′i (x

∗
i ) = 1. In order to simplify the firm’s entry

problem, it is assumed that vf (x
∗
i ) = x∗

i so that in equilibrium firm utility in the CM is

normalised to zero.

As is common in money-search models, money has a meaningful role as a medium of

exchange because consumers are unable to commit in the DM and firms cannot enforce

consumers’ promises. Financial intermediaries are endowed with the ability to enforce and

commit, and thus are able to play the role of financial intermediaries between consumers

and producers. Specifically, as in Lagos and Zhang (2022), consumers obtain credit from

financial intermediaries in the first stage in order to purchase goods in the DM. A credit

contract allows consumers to purchase goods in the DM in exchange for a claim on the

CM good, essentially a consumer issued bond. These credit contracts can be thought of

as being credit card payments where I have abstracted from issues surrounding default.

In the second stage, all agents can trade the CM good and money in a spot Walrasian

market. In the first stage, there are two markets: a goods market where money and

bonds are exchanged for the DM good and a financial market where money and bonds

are traded.

The financial market in the first stage is organised as follows. All financial intermediaries

have access to the financial market, where they can trade bonds and money competitively.

All consumers are able to access the financial market through a randomly assigned fi-

nancial intermediary. Consumers are assumed to make a take-it-or-leave-it offer to the

financial intermediary. Only a random subset of firms are able to access the financial

market. With probability α ∈ [0, 1], a firm matches bilaterally with a financial interme-

diary.

If a firm and an intermediary make contact, they are able to accept bonds as a means of

payment in exchange for a fee paid to the financial intermediary. The intermediation fee

is expressed in terms of the CM good and paid in the second stage. The intermediation

fee is determined by Nash bargaining between the firm and intermediary, where the

firm has bargaining power θ ∈ [0, 1]. I assume that firms that do not have access to

financial markets through an intermediary are unable to accept credit payments. Thus

the intermediation fee captures the real world card processing fees that firms pay to

merchant acquirers. The assumption that intermediaries have market power when dealing

with firms but not with consumers captures the free-banking system in the UK where

banking payments are free for consumers but costly for merchants.
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As the intermediation fee is set through Nash bargaining, firms that are able to access

financial markets will always be strictly better off. The parameter α captures the fact

that some physical retail firms do not accept card payments. As α is realised after firms

enter the submarket, there are two effects on digital firms. First, as some firms pay the

entry cost and are unable to accept payments, a lower α raises the effective entry cost of

physical firms. In addition, as these firms still enter the submarket, a lower α reduces the

match efficiency in the digital submarket. This captures the difficulty online retailers may

have in establishing themselves in an economy where digital payments are less pervasive.

The goods market in the first stage is organised according to the competitive search

equilibrium, as described in Rocheteau and Wright (2005). There is a price posting

mechanism where the terms of trade are publicly announced. As in Moen (1997), this

can be interpreted as arising from competition between market makers. Trade takes

place bilaterally between firms and consumers, and each submarket is subject to trading

frictions that occur due to a search externality. The set of open submarkets is partitioned

into two subsets indexed by firm types j ∈ {p, d}. Consumers can choose to enter any

submarket from the set of open submarkets, while firms are only able to enter open

submarkets in the subset of open submarkets indexed by their firm type. Formally,

consider an open submarket for type j firms indexed by js. The ratio of firms to consumers

in submarket js is denoted by njs = nf,js/nc,js . where nf,js ≤ Nf,j is the mass of firms

that enter submarket js from the mass of entrants into sector j, Nf,j, and nc,js is the

mass of consumers that enter submarket js.

The probability that a consumer who searches in submarket js matches with a firm is

δ (njs). As trade occurs bilaterally, the probability that a firm matches with a consumer

is δ (njs) /njs . It is assumed that δ′ (n) > 0, δ′′ (n) < 0, δ (n) ≤ min {1, n}, δ (0) = 0,

δ′ (0) = 1, and δ (∞) = 1. The market maker posts the terms of trade before the firm

knows if it has access to financial markets. Each submarket js consists of the following

ωjs = (yjs , pjs , njs). Where njs is the ratio of firms to consumers in the submarket and

yjs and pjs are the quantity and nominal price traded conditional on the ability of the

firm and the consumer to trade. In the physical sector, matched consumers and firms

are always able to trade. Physical retailers with access to the financial market can trade

using cash or card payments, while physical retailers without access to intermediaries

trade using money. In the baseline model, digital retailers cannot trade using money, and

thus matched consumers and firms in the digital sector can only trade if the firms obtain

access to the financial market and are able to process card payments. Figure 3 sets out

the model timing for each of the three agent types.

The instantaneous utility of a consumer at date t is

Uc,t = u (yt) + v (xt)− ht (1)
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t

Firms Firms choose
sector j ∈ {p, d}
to enter

Enter submarket
js ∈ Σj with
(xjs , φjs)

Match with consumers
with probability

δ(njs )

njs
.

Match with intermediary
with probability α
and negotiate fee k

Sell xjs at price φjs

conditional on
acceptable medium
of exchange

Produce, trade,
consume y and exit

t

Consumers Begin period with
money holdings m

Enter submarket
js ∈ Σ with
(xjs , φjs)

Match with firms
with probability δ (njs)

Buy xjs at price φjs

conditional on
acceptable medium
of exchange

Produce, trade,
consume y and
choose future
money holding m′

t

Financial
Intermediaries

Begin period with
money holdings m

Match with firms
with probability α
and negotiate fee k

Produce, trade,
consume y and
choose future
money holding m′

Figure 3: Model Timing

and a consumer’s lifetime utility is E0

∑∞
t=0 β

tUc,t. Similarly, the instantaneous utility of

a financial intermediary at date t is

Ub,j,t = v (xt)− ht (2)

and the financial intermediary’s lifetime utility is E0

∑∞
t=0 β

tUb,t. Finally, firms live for a

single period and the utility of a type j ∈ {p, d} firm that is active in date t is

Uf,j,t = −κjyt + v (xt)− ht. (3)

2.2 Efficient Allocation

A useful benchmark to consider is the efficient allocation. Given that the matching

function δ (·) is concave, it is optimal for the social planner to create one submarket per

sector. Thus, we can consider a social planner that chooses nj as the ratio of firm type

j ∈ {p, d} to consumers in each sector, the mass of firms in each sector Nf,j, as well as

an allocation Λ =
{
(yj,t)j∈{p,d}, (xi,t, hi,t)i∈{c,f,b}

}∞

t=0
. The planner maximises the equally

weighted utility of all agents at each point in time t. Thus, let

W =
∑

j∈{p,d}

(
nf,j

nj

δ (nj) [u (yc,j,t)− κjyf,j,t]−Nf,jη (Nf,j)

)
+
∑

i∈{c,b}

(vi (xi,t)− hi,t) +
∑

j∈{p,d}

Nf,j (vf (xf,t)− hf,t) .
(4)
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where nf,j is the mass of firms of type j that attempt to match with consumers, Nf,j is

the mass of firms that enter sector j and nj = nf,j/nc,j is the ratio of firms of type j to

the number of consumers who want to purchase from firms of type j. The planner aims

to maximise
∑∞

t=0 β
tWt subject to several feasibility constraints. First, the allocation

in the DM goods market must be feasible yc,j,t ≤ yf,j,t. Similarly, the allocation in the

CM goods market must also be feasible,
∑

i∈{c,f,b} xi,t ≤
∑

j∈{c,f,b} hi,t. Next, the mass of

firms wishing to trade must be feasible, and thus nf,j ≤ Nf,j must hold for all j ∈ {p, d}.
Finally, since consumers must trade with at most one type of firm,

∑
j nc,j ≤ 1. Thus, an

efficient allocation is an allocation Λ that maximises
∑∞

t=0 β
tWt subject to the feasibility

constraints.

The efficient allocation consists of y∗f,j,t = y∗c,j,t = y∗j,t where y∗j,t = u′−1 (κj) and x∗
i =

v′−1 (1) for all i ∈ {c, f, b}. Turning to the efficient submarket composition, the first

order condition from the planner’s problem yields

δ′ (nj)S
∗
j = η (Nf,j) +Nf,jη

′ (Nf,j) , (5)

where S∗
j ≡ u

(
y∗j,t
)
−κjy

∗
j,t denotes the surplus of trading with a firm in sector j ∈ {p, d}.

As firm entry is costly, it is efficient for all firms that enter a given sector to also enter

the submarket, and thus nf,j = Nf,j for all j ∈ {p, d}.

An efficient allocation where both digital and physical firms enter requires that all con-

sumers attempt to trade,
∑

j nc,j = 1, and that the following condition holds

(δ (nd)− ndδ
′ (nd))S

∗
d = (δ (np)− npδ

′ (np))S
∗
p . (6)

Equation (6) highlights the trade-off between sectors. A sector with a higher surplus will

be offset in equilibrium by a lower n and thus more congestion.

For a solution to equation (6) to exist, it must be the case that the ratio of S∗
d to S∗

p is not

too large or too small. In the case where S∗
d is significantly larger than S∗

p , it is optimal

for consumers to trade only with digital firms, and thus no physical firms would enter

the market. As all firms enter the digital sector, nc,d = 1 and thus nd = Nf,d. From the

properties of δ (·), it follows that limnj→0 (δ (nj)− njδ
′ (nj)) = 1. It follows that there is

no solution to equation (6) and that this corner solution is optimal if

δ (Nf,d)− δ′ (Nf,d)Nf,d >
S∗
p

S∗
d

(7)

where N∗
f,d can be found as the solution to δ′

(
N∗

f,d

)
S∗
d = η

(
N∗

f,d

)
+N∗

f,dη
′ (N∗

f,d

)
.

Similarly, the converse would hold in the case where S∗
p is significantly larger than S∗

d
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such that

δ
(
N∗

f,p

)
− δ′

(
N∗

f,p

)
N∗

f,p >
S∗
d

S∗
p

(8)

where N∗
f,p can be found as the solution to δ′

(
N∗

f,p

)
S∗
p = η

(
N∗

f,p

)
+N∗

f,pη
′ (N∗

f,p

)
. Here,

all consumers attempt to trade with physical firms nc,p = 1, and no firms would enter the

digital submarket.

2.3 Settlement in the centralised market

Consider the utility of an agent of type i ∈ {c, f, b} who enters the second stage with

money holdings m and bond holdings a. Their value function can be expressed as

Wi (m, a) = max
x,h,m′

[v (x)− h+ βVi (m
′)] ,

s.t. x+ ϕm′ ≤ h+ a+ ϕ
(
m+ I{i=c}T

)
,

(9)

where T ∈ R is the lump-sum monetary injection to an individual consumer, and ϕ is

the value of one unit of money in terms of the CM good x which is the numeraire.

As a welfare maximising agent will ensure their budget constraint binds, by substituting

out ht using the budget constraint equation (9) can be written as

Wi (m, a) = ϕm+ a+ W̄i, (10)

where

W̄i ≡ Ii=cϕT + v (x∗)− x∗ +max
m′

[βVi (m
′)− ϕm′] . (11)

The first-order condition with respect to the money demand of an agent of type i ∈ {c, b}
yields the following Euler equation

β
∂Vi (m

′)

∂m′ ≤ ϕ, with “ = ” if m′ > 0 for i ∈ {c, b} . (12)

2.4 Portfolio reallocation

For an agent who has access to the financial market at the end of the first subperiod,

they are able to adjust their portfolio following any transactions made before entering

the second subperiod. Consider the problem of an agent that ends the first subperiod

with a quantity m̃ of money and ã of bonds in the form of claims on good x in the second

subperiod. Agents with access to the financial market are able to trade money and bonds,

where one unit of money purchases 1
q
bonds. The portfolio reallocation problem is for
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agents to choose bond holdings a subject to the budget constraint m + qa ≤ ϕm̃ + qã.

This yields the following problem

max
a

Wi (m̃− q (a− ã) , a) = ϕ (m̃− q (a− ã)) + a+ W̄i, (13)

subject to agents holding a non-negative quantity of money, m = m̃− q (a− ã) ≥ 0.

It is useful to define the interest rate on bonds as i where (1 + i) = 1
ϕq
. In equilibrium,

the interest rate on bonds will be pinned down by the monetary authority through the

growth rate of money µ. I assume that monetary policy is set so that µ > β and thus

the nominal interest rate will be strictly positive i > 0. Given this equation (13) can be

written as

max
a

Wi (m̃− qa, a) = ϕm̃+
i

1 + i
a+

1

1 + i
ã+ W̄i, (14)

and as i > 0 it is optimal for agents who have access to financial markets not to carry

money into the second subperiod. As a consequence, only firms that are unable to access

financial markets would hold money between the subperiods.

2.5 Trade in the Decentralised market

A key distinction between sectors is their ability to accept cash as a means of payment

in the decentralised market. I introduce the dummy variable γj that takes the value 1 if

the firms in sector j are able to accept cash as a means of payment and 0 if not. Given

this, in the benchmark model, where only physical firms are able to accept cash, γj takes

the following values

γj =

1 if j = p

0 if j = d.
(15)

Consider the choice of a consumer who begins the period with money holdings m and

chooses to enter submarket js. The submarket js consists of posted terms of trade ωjs =

(yjs , φjs) and in equilibrium attracts a ratio of firms to consumers of njs . Where yjs is the

quantity of the good posted and φjs is the posted price in terms of the numeraire good

x. The price of the good in terms of money is thus
φjs

ϕ
. The ratio of firms to consumers

in submarket js is njs . The consumer’s value function can be written as

Vc (m) = max
ωjs∈Ω

{
δ (njs) [α + γj (1− α)]

[
u (yjs) + max

a
Wc

(
m− 1

ϕ
φjsyjs − qa, a

)]
+ (1− δ (njs) [α + γj (1− α)])max

a
Wc (m− qa, a)

}
.

(16)

With probability δ (njs), the consumer matches with a firm. Conditional on matching
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with a firm trade will occur with probability α + γj (1− α) which is the probability an

acceptable means of payment can be found. Thus, in the physical sector with γp = 1

matched consumers and firms will always trade, while in the digital sector where γd = 0,

matched consumers and firms only trade with probability α where firms have access to

financial markets that allow them to process card payments. As consumers are able to

rebalance their portfolios irrespective of whether they trade with a firm, the continuation

value of a consumer that does not match with a firm is the same as the continuation

value of a consumer that matches with a firm but is unable to trade with them.

As all consumers have access to financial markets, equation (16) can be rewritten by

using the solution to the optimal portfolio reallocation set out by equation (14) such that

Vc (m) = max
ωjs∈Ω

{
δ (njs) [α + γj (1− α)] [u (yjs)− (1 + i)φjsyjs ] + (1 + i)ϕm+ W̄c

}
. (17)

Turning now to the firm problem, firms live for one period and enter the period with a

debt equal to the cost of entry, which is payable in the second subperiod in terms of the

CM good. To characterise the firm’s value function, I first consider the value of a firm at

the end of the first sub-period that enters sector j and matches with a firm in submarket

js.

In the case where the firm cannot access financial markets, the firm is unable to adjust

its asset portfolio at the end of the first subperiod and is only able to trade if it can

accept cash (γj = 1). Thus, the firm ends the subperiod with a quantity of money equal

to γj
1
ϕ
φjsyjs and holdings of bonds equal to −η (Nf,j). Thus the value of the firm at the

start of the second subperiod is

Wf

(
γj

1

ϕ
φjsyjs ,−η (Nf,j)

)
= γjφjsyjs − η (Nf,j) (18)

where the above equation uses the fact that the firm’s CM good value function is defined

such that vf (x
∗)− x∗ = 0 and thus W̄f = 0.

With probability α, a firm that matches with a consumer negotiates a fixed fee k with the

financial intermediary in order to access the financial market. Firms and intermediaries

set the fee k through Nash bargaining and solve the following problem

max
k,m̄,a

[
Wf (m̄, a)−Wf

(
γj

1

ϕ
φjsyjs ,−η (Nf,j)

)]θ
k1−θ,

s.t. ϕm̄ ≤ φjsyjs −
(

1

1 + i

)
(a+ k + η (Nf,j)) ,

Wf

(
γj

1

ϕ
φjsyjs ,−η (Nf,j)

)
≤ Wf (m̄, a) .

(19)
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The firms benefit from access to financial markets in two ways. First, firms are able to

accept card payments from consumers and thus matched firms will be able to trade re-

gardless of their sector. Second, firms are able to rebalance their portfolio before entering

the second subperiod. As set out in equation (14), firms with access to financial markets

will choose not to hold cash between the two subperiods, benefiting from the positive

interest rate on bonds.

The surplus generated by allowing firms to access the financial market is

∆Wf,j = (1 + i− γj)φjsyjs − k (20)

and the solution to the Nash bargaining problem yields the following

k = (1− θ) (1 + i− γj)φjsyjs , (21)

where the intermediation fee is set such that it captures a share (1− θ) of the total

surplus. A key determinant of the surplus and hence the fee is the outside option of the

firm. As firms that are able to accept cash as a means of payment have a larger outside

option, and hence face lower intermediation fees.

At the beginning of the period, nascent firms choose which sector to enter. The value of

a firm entering sector j at the beginning of a period depends on Nf,j, the total mass of

entrants into that sector. Given the above discussion, this value is given by the following

equation

Vf,j (Nf,j) = max
ωjs∈Ωj

{
δ (njs)

njs

[(1 + αθi)φjsyjs − κjyjs ]

− (1− γj)
δ (njs)

njs

[(1− αθ)φjsyjs − (1− α)κjyjs ]− η (Nf,j)

}
,

(22)

where firms in sector j are limited in choosing a submarket ωjs from the partition of

submarkets designed for sector j firms, Ωj ⊂ Ω.

Finally, consider a financial intermediary that begins the period with money holdings m.

The value function of a financial intermediary is

Vb (m) =max
a

Wb

(
m− q

(
a− α

∑
js

nc,jsδ (njs) kjs

)
, a

)
. (23)

Using the fact that the fee revenue is kjs = (1− θ) (1 + i− γj)φjsyjs , and solving for the
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optimal portfolio reallocation, this can be rewritten using equation (14) as

Vb (m) = α
∑
js

nc,jsδ (njs) (1− θ) (1 + i− γj)φjsyjs + ϕ (1 + i)m+ W̄b. (24)

Financial intermediaries do not buy or sell goods in the first subperiod but instead collect

intermediation fees from a fraction α of firms that match with consumers.

3 Equilibrium

In this section, I focus on characterising the steady-state equilibrium, which is defined as

follows:

Definition 1. A steady-state equilibrium is an interest rate i, real money balances ϕtMt,

a set of open submarkets Ω, a partition {Ωp,Ωd}, for each submarket ωj ∈ Ωj a list(
yωj

, φωj
, nωj

, nc,ωj
, kωj

)
and a mass of firms entering each sector (Nf,p, Nf,d) such that:

i) taking prices as given, the end-of-period money holdings solve equation (12) for

i ∈ {c, b} and supply of bonds in the intra-period financial market clears with bonds

in zero net supply;

ii) the set of open submarkets maximises consumer welfare, equation (17) subject to

Vf,j (Nf,j) ≥ 0,
∑

ωj∈Ωj
nf,ωj

≤ Nf,j and
∑

ωj∈Ω nc,ωj
= 1;

iii) intermediary fees solve the bargaining problem in equation (19);

iii) firms entering sector j ∈ {p, d} make zero profit in expectation;

I focus on a monetary equilibrium where real money balances ϕtMt > 0 are constant over

time. First, in equilibrium, the interest rate on intra-period bonds is i = µ/β − 1. This

equates the marginal cost of holding money, which depends on the growth rate of money

(µ) with the marginal return of holding money in the next period decentralised market,

1 + i.

Consider the next end-of-period money demand. This is characterised by equation (12)

for i ∈ {c, b}, while firms by assumption live for only one period and thus are unable

to hold money between periods. From equation (14) it follows that agents with access

to financial markets would choose not to hold money between the first subperiod and

second subperiod. Only firms without access to financial intermediaries and are able to

accept money as a means of payment hold money between the two subperiods. Aggregate

demand for real money balances is then

ϕtMt = (1− α)
∑
j

γjnc,jδ (nj)φjyj. (25)
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Thus, a monetary equilibrium requires α < 1, although, as in Lagos and Zhang (2022),

the cashless limit where α → 1 can also be considered. Due to the concavity of the

matching function, δ (·), in equilibrium, there will be at most one submarket for each

sector j. Thus, to simplify the notation, I now drop the subscript s, as in the above

equation, and index the submarkets by sector j ∈ {p, d}.

The open submarket for sector j consists of a price φj, a quantity yj, and a tightness

nj = nf,j/nc,j that maximises equation (17) subject to Vf,j (Nf,j) ≥ 0, taking Nf,j as

given.

Consumers are free to choose which of the submarkets to enter, and thus, for a positive

mass of consumers to enter both submarkets in equilibrium, consumers must be indifferent

between the two submarkets. With some abuse of notation, denote Vc,j as the expected

utility of a consumer who chooses to shop in submarket j. Thus, a requirement for both

sectors to actively trade is Vc,p = Vc,d. In the case where Vc,p ̸= Vc,d, all consumers search

in only one of the sectors, leaving the other sector inactive. As there are gains from trade

and searching in a submarket is costless, all firms enter a submarket
∑

j nc,j = 1.

Given that there is free entry into each of the sectors, firms enter until the expected

profits in each sector are driven to zero: Vf,j (Nf,j) = 0. As firms that have entered sector

j commit to paying the entry cost and searching in a submarket is costless, any firm that

chooses to enter the market will also attempt to trade, and thus nf,j = Nf,j.

3.1 Equilibrium without CBDC

In this section, I further characterise the equilibrium in the benchmark model without

CBDC. In this case, γj is defined as in equation (15) and only firms in the physical sector

are able to accept cash as a means of payment.

Solving first for the posted quantity in both submarket yields

yd = u′−1

(
1

θ
κd

)
(26)

and

yp = u′−1

((
1 + i

1 + αθi

)
κp

)
, (27)

for the digital and physical submarkets respectively.

Compared with the optimal consumption level, consumption in the digital sector is lower

than optimal in the digital sector whenever θ < 1, while consumption in the physical

sector is lower than optimal whenever i > 0 or αθ < 1.
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It is instructive to consider the case where θ = 1 and α < 1. Here, firms have imperfect

access to the financial market, but access is costless (kj = 0). In this case, while con-

sumption in the digital sector is at the optimal level, trade between matched firms and

consumers occurs only with probability α. Trade in the digital sector is conditional on

access to the financial market, but the means of payment is costless. On the other hand,

trade between matched firms and consumers will always take place, but the quantity

traded will be lower than optimal so long as i > 0. The distortion in quantity traded

occurs because trade without access to financial markets is possible but requires the use

of cash, which is a costly means of payment if i > 0.

Taking the mass of firms entering each sector as fixed, the equilibrium tightness in sector

j can be found by maximising equation (17) with respect to nj subject to equation (22)

being nonnegative. This yields

δ′ (nd) Γd =
1

αθ
η (Nf,d) , (28)

and

δ′ (np) Γp =

(
1 + i

1 + αθi

)
η (Nf,p) , (29)

for the digital and physical submarkets respectively. Here, Γj ≡ u (yj) − yju
′ (yj) de-

notes the surplus available from trade between a consumer and a type j firm for a given

consumption yj.

Using the above first order conditions and the participation constraint of firms Vf,j (Nf,j) =

0, equation (17) yields the following equation for expected utility of consumers that at-

tempt to trade in the digital sector submarket

Vc,d = α (δ (nd)− ndδ
′ (nd)) Γd, (30)

and the following equation for consumers attempting to trade in the physical submarket

Vc,p = (δ (np)− npδ
′ (np)) Γp. (31)

The above equations state that consumer utility is increasing in the ratio of firms to

consumers in each submarket, nj, and in the surplus from trade, Γj. In the digital sector,

since money cannot be used as a means of payment, consumer utility is discounted by a

factor α, the probability that firms are able to access financial markets.

The equilibrium prices, φj for j ∈ {p, d} can be found from the corresponding firm

participation constraints, Vf,j (Nf,j) = 0, taking firm entry as given. This yields

(1 + i)φdyd = ydu
′ (yd) +

1

αθ

nd

δ (nd)
η (Nf,d) , (32)
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and

(1 + i)φpyp = ypu
′ (yp) +

(
1 + i

1 + αθi

)
np

δ (np)
η (Nf,p) , (33)

for the digital and physical sectors respectively.

Similarly to the efficient allocation, if the surplus from trade in one sector is sufficiently

high relative to the other sector, the equilibrium will lie at a corner where only one sector

is active.

Consider first the case where consumers only trade in the digital sector and thus nc,d = 1

and nd = Nf,d. This is an equilibrium in the case where consumers strictly prefer to enter

the digital submarket and thus Vc,d > Vc,p . This is the case if the surplus from trading in

the digital sector Γd is sufficiently high compared to the physical sector surplus Γp such

that the following inequality holds

δ (Nf,d)− δ′ (Nf,d)Nf,d ≥
1

α

Γp

Γd

, (34)

where Nf,d is the solution to δ′ (Nf,d) Γd =
1
αθ
η (Nf,d) .

Similarly, an equilibrium where consumers only trade in the physical sector and thus

nc,p = 1 and np = Nf,p exists if the surplus from trading in the physical sector Γp

is sufficiently high compared to the digital sector surplus Γd such that the following

inequality holds

δ (Nf,p)− δ′ (Nf,p)Nf,p ≥ α
Γd

Γp

, (35)

and where Nf,p is the solution to δ′ (Nf,p) Γp =
(

1+i
1+αθi

)
η (Nf,p).

In cases where firms enter both sectors, consumers must be indifferent between the two

submarkets such that Vc,p = Vc,d and thus

α (δ (nd)− δ′ (nd)nd) Γd = (δ (np)− δ′ (np)np) Γp. (36)

Equation (36) highlights that in an equilibrium where both sectors are active, consumers

trade off the gains from trade with the probability that they are matched with and are

able to trade with a firm. In addition to the matching friction, absent CBDC, digital

firms can only transact with consumers if they have access to the financial market; thus,

in the case where the gains from trade are the same across sectors, consumers would

require a higher probability of trade (nd > np ) in order to be indifferent between the two

sectors.

Where firms enter both sectors, firm entry drives ex ante expected firm profits to zero.

Given that firms must commit to paying a fixed cost to enter at the beginning of the
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period, all firms that enter a sector will also enter the submarket, thus nf,j = Nf,j ∀j.
Furthermore, since the gains from trade are positive, all consumers enter one of the two

submarkets, and so nc,d+nc,p = 1. Given this, Nf,d and Nf,p can be found as the solution

to equations (28), (29), and (36).

In cases where α, θ < 1, frictions in financial markets reduces the availability and increase

the cost of digital payments. Money has a dual role to play in this case; first, it provides

an alternative form of payment in cases where firms do not have access to card payments

which facilitates a greater number of transactions, and second, it improves the bargaining

position of firms in the financial market which allows more firms to enter the physical

retail market.

In facilitating additional trades in the physical sector, money increases the probability

that both firms and consumers are able to trade at a given submarket tightness relative to

the digital sector. As a consequence, relatively more firms and relatively more consumers

will enter the physical sector relative to the digital sector. From equation (35) it follows

that if α is sufficiently small, only the physical sector will be active.

To highlight the role money plays in improving the bargaining position of firms in the

physical sector, consider the special case where α = 1. This shuts down the first role

that money plays in providing an alternative form of payment. Then in the symmetric

case where κp = κd it follows that yp > yd for any θ < 1 and i < ∞ and thus Γp > Γd.

As firms in the physical sector face lower costs of financial intermediation, they pass this

on to consumers in the form of higher gains from trade. For an interior solution, where

both sectors are active, it follows from equation (36) that there must be a larger ratio

of firms to consumers in the digital sector (nd > np) to compensate for the lower gains

from trade. As the matching function δ (·) is concave, it then follows from equations (28)

and (29) that a greater number of firms enter the physical sector than the digital sector,

Nf,p > Nf,d, and consequently a larger number of consumers also enter the physical

submarket compared to the digital submarket, nc,p > nc,d.

Turning now to the model’s implications regarding the increase in the proportion of online

sales identified in Figure 2, denote by ∆ the share of total sales that take place in the

digital sector, where

∆ =
αnc,dδ (nd)

αnc,dδ (nd) + nc,pδ (np)
. (37)

For simplicity and to generate analytical results, I focus here on the share of number of

sales rather than the share of sales revenue. However, when I later calibrate the model to

UK data, I use the model analogue to Figure 2, the share of sales revenue in the digital

sector.
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One possible explanation for the increased share of the digital retail sector is a relative

increase in the productivity of the digital sector. Consider a decrease in κd, the marginal

cost faced by firms in the digital sector. From equation (26) it follows that a decrease

in κd results in high consumption in the digital sector, yd, and thus higher gains from

trade, Γd. This will result in some consumers switching from trading with physical firms

to digital firms, leading to an increase in the share of sales made in the digital sector.

This result is formalised in Proposition 1 below.

Proposition 1. Consider a competitive equilibrium without CBDC such that γd = 0 and

γp = 1. If the competitive equilibrium is such that nd > 0 and np > 0, then decreasing the

marginal cost of digital firms, κd: i) decreases nc,p and Nf,p; ii) increases nc,d and Nf,d;

and iii) increases ∆.

Proof. See the Appendix.

Proposition 1 establishes that, absent CBDC, a decrease in the marginal cost of pro-

duction for digital firms also affects the firm entry decision of firms. Driven by lower

cost of production, the number of firms entering the digital sector increases, while higher

competition and lower competitiveness leads to a fall in the number of firms entering the

physical sector.

A second explanation for the increased share of the digital retail sector is a reduction in

financial frictions. As discussed above, when α, θ < 1 frictions in financial markets result

in digital firms being at a competitive disadvantage relative to physical firms. An increase

in the availability of digital payments, α, or an increase in the firm’s bargaining power,

θ, will benefit digital firms relatively more than physical firms, leading to an increase

in the share of digital sales increasing. Proposition 2 develops analytical results in the

simplified case where i → 0.

Proposition 2. Consider a competitive equilibrium without CBDC such that γd = 0 and

γp = 1. Assume i → 0. If the competitive equilibrium is such that nd > 0 and np > 0,

then increasing either the firm’s bargaining power, θ, or access to financial markets, α:

i) decreases nc,p and Nf,p; ii) increases nc,d and Nf,d; and iii) increases ∆.

Proof. See the Appendix.

Proposition 2 establishes that, absent CBDC and in the case where i → 0, an increase in

α or θ reduces the competitive disadvantage facing digital firms, resulting in firm entry

increasing in the digital sector and decreasing in the physical sector. Additional firm

entry coupled with an increase in the gains from trade in the digital sector leads some
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consumers to switch from the physical sector to the digital sector as trading with digital

firms becomes more appealing. The case where i → 0 simplifies the proof as the gains

in trade in the physical sector, Γp, are not affected by α or θ. In cases where i > 0, an

increase in α or θ will increase both Γp and Γd. Intuitively, the relaxing financial frictions

is likely to benefit the digital sector relatively more than the physical sector, as only the

physical sector has the option to accept money as a means of payment. Thus, while no

formal proof is offered, it is likely that this result will hold for reasonable values of i > 0.

3.2 Introduction of a CBDC

Consider now the case where the monetary authority decides to introduce a digital form

of money, for example a CBDC, that can be used as a means of payment by digital firms.

Thus the key change relative to the benchmark model is that equation (15) now becomes

γj = 1 ∀i ∈ {p, d} . (38)

The problem for digital firms becomes identical to the problem for physical firms, with

the only difference between sectors occurring in cases where the sectors differ in terms of

their marginal cost of production, and thus κp ̸= κd.

Given that the introduction of a CBDC removes the disparity between the two sectors, we

might expect to be able to reach the efficient equilibrium. From equation (27), it follows

that if αθ < 1, the optimal level of consumption can be achieved for both sectors if i → 0.

Thus, the Friedman rule implements the optimal level of consumption. It follows that

as i → 0, the gains from trade are equal to the optimal surplus Γj = S∗
j . Furthermore,

since equations (6) and (36) are identical, the market tightness nj will also be optimal.

However, firm entry will not be at the optimal level. This can be seen by comparing

equation (5) with the analogue in the model with CBDC where i → 0 implies that firm

entry is determined by the following equation

δ′ (nj) Γj = η (Nf,j) . (39)

Direct comparison of these equations highlights that entry will be higher than optimal

in the model with CBDC and free entry of firms. This occurs because of the structure

of entry costs, which is increasing in the number of entering firms. Formally, equation

(39) lacks the term Nf,jη
′ (Nf,j) which captures the fact that in competitive equilibrium,

firms do not internalise the effect their entry decision has on the entry cost of other firms.

As a consequence, firm entry is too high relative to the optimum, and the Friedman rule

does not yield the efficient allocation.
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The efficient level of entry can be achieved through the use of a tax on firm entry.

Specifically, consider a sector-specific entry tax τj that is levied on firms and redistributed

to consumers through the lump sum transfer T . In the model with CBDC, the optimal

level of entry can be achieved through setting the entry tax such that

(1 + τj) η (Nf,j) = η (Nf,j) +Nf,jη
′ (Nf,j) . (40)

The equilibrium with CBDC is optimal only if the government implements the Friedman

rule, setting i → 0 and taxing firm entry at a level such that firms internalise the entry

externality. This result is formalised in Proposition 3 below.

Proposition 3. A competitive equilibrium with CBDC such that γd = 1 and γp = 1 and

financial frictions such that αθ < 1 is optimal iff i) i → 0 and ii) there is a sector-specific

tax on entry τj such that τj = Nf,jη
′ (Nf,j) /η (Nf,j).

Proof. See the Appendix.

A corollary of Proposition 3 is that, absent the optimal entry tax, the Friedman rule does

not yield the optimal allocation. Instead, setting the optimal interest rate consists of a

trade-off. While increasing the interest rate above zero reduces trade efficiency, it also

raises the cost of entry for firms, mitigating the excessive entry.

The introduction of a CBDC eliminates the competitive advantage of the physical sector

over the digital sector. Whether or not the introduction of a CBDC is welfare improving

would depend in part on the severity of the entry externality. If the entry externality

is sufficiently large, the introduction of a CBDC can, in increasing entry into the digital

sector, reduce overall welfare. This scenario is likely only an academic curiosity that

could be solved through the introduction of an entry tax.

I now consider whether the trend towards greater digital retail sales has affected the

welfare gains of introducing a CBDC. Consider the case where the conditions set out in

Proposition 3 hold and where introducing a CBDC yields the optimal allocation. In this

case, whenever αθ < 1 the benchmark model will not yield the optimal allocation and

thus introducing a CBDC will be strictly welfare increasing. Proposition 4 formalises this

result in addition to how the welfare gain is affected by key model parameters.

Proposition 4. In the case where i → 0 and there is a sector-specific tax on firm entry

τj = Nf,jη
′ (Nf,j) /η (Nf,j) then i) introducing a CBDC strictly increases welfare whenever

αθ < 1; ii) the welfare gain of introducing a CBDC is decreasing in α and θ; and iii) if

θ = 1 and α < 1 the welfare gain of introducing a CBDC is decreasing in κd.

23



Proof. See the Appendix.

Proposition 4 states that a reduction in financial frictions, either through an increase

in α or θ, results in a decrease in the welfare gain of introducing a CBDC. Intuitively,

the optimal welfare level remains unchanged after a change to α or θ, while, due to

the reduction in financial frictions, there is an increase in the welfare of the equilibrium

without CBDC.

Studying the welfare impacts of a decrease in marginal costs of digital firms, κd, is com-

plicated by the fact that welfare increases for both the model with and without CBDC.

Introducing the simplifying assumption θ = 1 allows for analytic tractability. It follows

from Proposition 4 that, conditional on θ = 1, a fall in the marginal cost of digital firms,

κd, increases the welfare gains from introducing a CBDC. As a decrease in κd leads to

a shift from trades involving physical firms to digital firms, the welfare gain is greater if

a CBDC has been introduced because digital firms face lower frictions than if a CBDC

were absent.

The above discussion has an important implication regarding the possible benefits of

introducing a CBDC in the context of the digitalisation trends identified by Figures 1

and 2. Should the increase in digital retail sales be driven by reductions in financial

frictions, the benefits of introducing a CBDC would have decreased over time. However,

if the increase in digital retail sales is driven by an increase in the productivity of digital

firms, the welfare benefits of introducing a CBDC would increase as this trend continues.

Which of these channels dominates is largely an empirical question.

4 Numerical analysis

The previous section set out two potential drivers of the digitisation of retail transactions;

a reduction in financial frictions or an increase in the relative productivity of digital firms.

However, these drivers have different implications for the welfare benefits of introducing

a CBDC. This section provides quantitative results. First, the model is calibrated to

UK data. The sensitivity of this baseline calibration is explored. Finally, the calibrated

model is used to assess which of the drivers of digitisation were of the most quantitative

importance, and thus how the welfare effects of the introduction of a CBDC have changed

over time.
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4.1 Baseline Calibration

The model is parameterised as follows. The utility function of consumers in the DM is

u (yt) =
1

1− σ

[
(yt + ϵ)1−σ − ϵ1−σ

]
, (41)

where σ > 0 and the parameter ϵ is set to 0.0001. This ensures u (0) = 0 and u (·) is

close to CRRA. This parameter has little impact quantitatively and is common in the

money-search literature. The utility of agents in the CM is assumed to have the following

functional form:

vi (x) = Bi ln (x) , (42)

which implies that x∗ = Bi. In addition, it is assumed that B = Bc = Bb while ln (Bf ) = 1

is such that the firm utility in the CM is normalised to zero. The matching function

specified is analogous to the one used in Rocheteau and Wright (2009) and is

δ (nj) =
nj

1 + nj

. (43)

The firm entry cost is assumed to take the following quadratic form

η (Nf,j) =
η0
2
(Nf,j)

2 , (44)

where η0 > 0.

The model is calibrated to UK annual data. The parameter that determines availability

of card payments, α, is calibrated to the proportion of cash transactions relative to the

total number of cash and card transactions. Data are obtained from UK Finance’s UK

Payment Markets Report, where the number of transactions made with cash averaged

over 2010-2022 is around 48%. The marginal cost of physical firms, κp, is normalised to 1,

while the marginal cost of digital firms, κd, is calibrated to the proportion of internet sales

as a percentage of the total value of retail sales. Data are obtained from the ONS Retail

Sales Index, where 16.4% of retail sales were made online on average between 2010 and

2022. The firm’s bargaining power, θ, is calibrated to card handling costs as a fraction

of the card transaction turnover. Data are obtained from the British Retail Consortium

Payments Survey, where the average card handling costs during the 2010-2022 period

stood at 0.41% of the turnover from card transactions. Finally, the fixed cost of the firm,

η, is calibrated so that the ratio of fixed costs to total output in the model matches the

average ratio of gross fixed capital in the retail sector to GDP between 2010 and 2022

(0.48%).

The parameters (σ,B) are calibrated analogously to those of Lucas (2000) and Lagos
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Table 1: Baseline Calibration

Parameters Notation Value Calibration Target

Availability of
card payments

α 0.467 Fraction of cash transactions 2010-2022

Digital firm cost κd 0.601 Fraction of online transaction value 2010-2022

Firm bargaining
power

θ 0.986 Card handling costs 2010-2022

Firm fixed cost η0 0.002 Retail Sector GFCF/GDP 2010-2022

Curvature of DM
Consumption

σ 0.462 CIC/GDP demand function 1982-2023

Coefficient of CM
Consumption

B 1.425 CIC/GDP demand function 1982-2023

and Wright (2005) where the parameters are set to match the relationship between the

nominal interest rate i and the demand for money L ≡ ϕtMt/Y using a longer time series

of data.

Output in terms of the numeraire good x in the decentralised market is

Ȳ = αnc,dδ (nd)φdyd + nc,pδ (np)φpyp, (45)

and output in the centralised market is

X̄ = 2B + (Nf,p +Nf,d)Bf . (46)

Combining this with the equation for real balances (25) the model implied function for

L is given by

L =
M̄

Ȳ + X̄
(47)

where M̄ = (1− α)nc,pδ (np)φp,typ,t is the value of money demanded in terms of the

numeraire good x.

The series for i is the spot yield on UK one-year Gilts and PY is UK nominal GDP.

I deviate from Lucas (2000) and Lagos and Wright (2005) letting M be the amount of

currency in circulation (CIC) as opposed to M1. The reason behind this is that money in

the model is best interpreted narrowly as cash, as opposed to M1. However, calibrating

the model to M1 instead of CIC does not significantly alter the results.

Table 1 summarises the parameter values in the baseline calibration along with the cor-

responding calibration target. Figure 4 shows the model-predicted curve for CIC/GDP

as a function of the nominal rate compared to the UK data between 1982 and 2023.
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Figure 4: Model and Data (1982-2023)

4.2 Effect of introducing a CBDC

I now consider the effect of the introduction of a CBDC into the model. The introduction

of a CBDC allows digital firms to transact in the absence of access to the payments

market. This has two effects: first, the number of possible transactions in the digital

sector increases as transactions are no longer conditional on firms receiving access to

the payments market, and second, digital firms have a better bargaining position with

payment operators due to the existence of an outside option for transactions. The effect

on welfare and key data moments of the introduction of a CBDC is presented in Table

2. The introduction of CBDC increases the proportion of sales in the digital sector and

reduces the number of cash transactions that occur on average. The proportion of Internet

sales following the introduction of CBDC is close to optimal. The model also predicts a

significant increase in welfare of around 85%. Putting this welfare increase in context, the

model abstracts away from many welfare costs associated with the introduction of CBDC

in the literature, such as issues surrounding financial stability and bank disintermediation.

In the baseline calibration, the welfare gains are driven by the proportion of Internet sales

being relatively low, while the number of cash transactions is relatively high. The model

captures this through low availability of card payments (α = 0.467) and with digital firms

facing lower production costs compared to physical firms (κd = 0.601). Given that digital
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Data
Baseline
Model

Model with
CBDC

Optimal
Allocation

Internet Sales 0.164 0.164 1.0 1.0

Cash Transactions 0.477 0.477 0.0 0.0

Card Handling Costs 0.0041 0.0041 0.004 0.0

Retail Sector GFCF / GDP 0.0048 0.0048 0.0105 0.0052

Welfare (optimal=100) 52 96 100

Table 2: Effect of CBDC introduction on Moments and Welfare

firms are more efficient than physical firms in this calibration, it would be optimal for

digital firms to have a much larger share of sales revenue. This results in a large welfare

loss that stems from digital firms without access to the finanical market not being able

to transact with consumers. The introduction of a CBDC increases the ability of digital

firms to transact with consumers, and thus the proportion of sales made by digital firms

is close to the optimal level.

To better understand what generates the welfare gains from introducing a CBDC in the

baseline calibration, Figure 5 compares the welfare of the model without CBDC (relative

to optimal) with the welfare of the model with CBDC (relative to optimal), while altering

the values of key parameters of the model. Other parameters are fixed at the calibration

values of the baseline model. Figure 5 highlights the sensitivity of welfare gains to the

parameterisation. It should be noted that in the baseline calibration, interest rates are

close to zero (i = 0.006) and θ is close to 1 and thus introducing a CBDC reduces most of

the frictions in the model. The key difference in welfare between the CBDC model and the

optimal allocation is the entry externality, which is comparatively small in welfare terms

compared to the payment frictions. A key result is that welfare gains are largest when

there is low availability of card payments (α is low) and when the relative productivity of

the digital sector is high (κd is low). As α → 1 the model without CBDC approaches the

optimal allocation and the welfare gains from introducing a CBDC disappear. In fact,

as α → 1, there is a small welfare loss from the introduction of a CBDC. The reason for

this is, due to the entry externality, there is too much entry in the model with CBDC.

While the entry externality exists in the benchmark model, the over-entry is mitigated

by the lack of firm bargaining power in the digital sector.

4.3 Capturing the rise of the digital economy

In the baseline calibration, the model was matched to the 2010-2022 average data, where

the share of Internet sales was relatively low and the share of cash transactions relatively
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Figure 5: Sensitivity of welfare relative to optimal to Parameters
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Figure 6: Sensitivity of share of digital sector to Parameters
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high compared to the latest data. As illustrated in Figures 1 and 2, this period featured

a rapid increase in both the proportion of Internet retail sales and a decrease in the share

of cash transactions in the UK.

Figure 6 shows how the fraction of sales made in the digital sector varies as key parameters

of the model are altered, holding other parameters fixed at the calibration values of

the baseline model. The model suggests that several parameters could be driving the

increasing trend in online retail observed in the data. First, a decrease in κd relative to κp

would result in digital firms facing lower marginal production costs and hence are more

productive than physical firms. This could occur due to technological advances being

made in the economy that benefit digital firms to a greater extent than physical stores.

This increase in relative productivity would lead to a higher proportion of consumers

entering the digital submarket and would lead to digital firms receiving a larger share

of total trades. Second, an increase in availability of card payments, α, would result in

digital firms having a higher probability to transact with consumers, and as a consequence

consumers would switch from physical stores to digital stores. Although an increase in

both the entry cost, η0, and the firm’s bargaining share, θ, could also explain the online

retail trend, the model appears less sensitive to these parameters at the benchmark

calibration, and thus it is unlikely that these would be the key drivers of the online retail

trend.

Focussing on an increase in the availability of card payments α and a decrease in marginal

cost in the digital sector κd, it is worth noting that these two drivers toward online

retail have very different implications for the welfare gains of introducing a CBDC. A

decrease in κd would increase the welfare gains from the introduction of a CBDC while

an increase in α would decrease the welfare gains from the introduction of a CBDC.

To address which of these channels dominates, I now extend the baseline calibration by

allowing the parameters (αt, κd,t, θt, η0,t) to vary over the years 2010-2022 while keeping

the remaining parameters fixed at their values in the baseline calibration. The parameters

αt, κd,t, η0,t and θt are calibrated to the time series of the proportion of cash transactions,

the proportion of Internet sales, retail sector GFCF / GDP, and card handling costs,

respectively.

Figure 7 shows the series of calibrated parameters. The model suggests that the increase

in the share of Internet sales and the decrease in cash use are driven by an increase in α,

greater availability of card payments, as opposed to lower marginal costs of digital firms,

κd. In fact, the model suggests that the marginal costs of digital firms increased over the

period 2010-2022.

Figure 8 shows the calibrated moments for the benchmark model and the model with

CBDC. The benchmark model matches the increase in Internet sales and the decline
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Figure 7: Parameter Calibration (2010-2022)
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Figure 8: Calibrated Moments and Counterfactual Moments (2010-2022)

31



201
0

201
2

201
4

201
6

201
8

202
0

202
2

0.0

0.2

0.4

0.6

0.8

1.0

Re
lat

iv
e W

elf
ar

e

w/o CBDC CBDC Optimal

Figure 9: Welfare relative to Optimal (2010-2022)

in cash transactions found in the data. Cash transactions in the CBDC model capture

payments in the physical sector made using money which, given that the model does not

distinguish between the two, could consist of both cash payments and CBDC payments.

As the model suggests κd increases during the 2010-2022 period, the gap between the

benchmark model and the model with CBDC narrows for both Internet sales and cash

transactions.

The implications of this calibration are that the welfare gains of introducing a CBDC fall

over the period 2010-2022. Figure 9 shows that welfare in the benchmark model relative

to optimal increases over time, while welfare in the model with CBDC remains close to

optimal. The gain in relative welfare in the benchmark model is driven by the increase in

both α and κd over the time period. This suggests that the decline in cash and increase

in online sales observed in the data is driven predominantly by improvements in payment

efficiency rather than productivity gains in digital retail. If anything, the productivity

gap between online and offline retail appears to be narrowing over time. The relative

welfare of the model with CBDC remains close to optimal because the nominal interest

rates are close to zero for most of the period, while θ also remains close to 1.

As discussed previously, since the model abstracts from possible negative implications

of introducing a CBDC, the level of welfare gains of introducing a CBDC to the model
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should only be interpreted as measuring the possible benefit of offering an alternative

means of payment for digital transactions. Given the benefit of introducing a CBDC

benefits firms in the digital sector, one might think that the welfare gains would be

greater when there are a higher number of Internet transactions and fewer transactions

made using cash. The results presented here suggest that this may not necessarily be

the case. Instead, it is important to gain an understanding of what is driving the shift

toward Internet sales and away from cash transactions.

5 Conclusion

Current proposals for the introduction of a CBDC, such as those made by the Bank

of England and the ECB, have coalesced around an unremunerated CBDC. An obvious

question then is, if it offers the same rate of return, how would a CBDC be distinct

from existing forms of money? This paper proposes a simple mechanism through which

an unremunerated CBDC may improve welfare by lowering the market power financial

intermediaries have in negotiating fees with digital firms that cannot use cash as an

alternative means of payment.

Although the introduction of a CBDC has the potential to improve welfare, the model

suggests that the size of any welfare increase depends on the degree to which the inability

to trade with physical money deters the entry of online retailers. Given the trend for

an increasing proportion of online retail transactions and the increasing use of digital

payment methods, it is important to understand the underlying drivers of these changes.

When calibrated to the UK data, the model suggests that while there are still significant

welfare gains from the introduction of a CBDC, the benefits have actually fallen over the

period 2010 to 2022 as the proportion of online transactions has increased and cash usage

has fallen.

Finally, while the model presented in this document abstracts from many of the design

choices central banks are currently facing, the basic mechanism of the model relies on

a CBDC as offering a credible alternative to existing digital payment methods. Thus,

should a CBDC reuse existing payment infrastructure without providing additional com-

petition, the welfare benefits set out in this paper would be overstated.
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Appendix

Comparative Statics

A competitive equilibrium such that nd > 0 and np > 0 satisfies equations (28), (29) and

(36). Using the fact that by definition nf,j = Nf,j = nc,jnj and that in any equilibrium

all consumers attempt to trade, nc,d + nc,p = 1, the equilibrium can be written as the

following system of three equations and three endogenous variables n = (np, nd, nc,p):

F ≡

f1f2
f3

 =

 (α + γd (1− α)) (δ (nd)− ndδ
′ (nd)) Γd − (δ (np)− npδ

′ (np)) Γp

(α + γd (1− α)) δ′ (nd) Γd −
(
(1− γd)

1
θ
+ γd

(
1+i

1+αθi

))
η ((1− nc,p)nd)

δ′ (np) Γp −
(

1+i
1+αθi

)
η (nc,pnp)

 =

00
0

 ,

(A.48)

where Γj ≡ u (yj)− yju
′ (yj) and

yj = u′−1

((
(1− γd)

1

θ
+ γd

(
1 + i

1 + αθi

))
κj

)
. (A.49)

Here we have already imposed γp = 1 as the physical sector is assumed to always be able

to accept cash.

The Jacobian of F can be written as

J =


∂f1
∂nd

∂f1
∂np

0
∂f2
∂nd

0 ∂f2
∂nc,p

0 ∂f3
∂np

∂f3
∂nc,p

 (A.50)

where it follows from the derivatives of F that det (J) > 0.

Next, denote by Jni,z matrix formed by replacing the i-th column of J by the column

vector
[
∂f1
∂z

∂f2
∂z

∂f3
∂z

]′
where z is some exogenous variable. The derivative of ni with respect

to z is then
∂ni

∂z
= −det (Jni,z)

det (J)
(A.51)
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Proof of Proposition 1

In a competitive equilbirium without CBDC, γd = 0 and thus for some exogenous variable

z we have the following equations for Jni,z

det (Jnd,z) = −∂f1
∂z

(
δ′′ (np) Γp −

(
1 + i

1 + αθi

)
nc,pη

′
p

)
1

θ
ndη

′
d

+ δ′′ (np)npΓp

(
∂f2
∂z

(
1 + i

1 + αθi

)
npη

′
p +

∂f3
∂z

1

θ
ndη

′
d

) (A.52)

det
(
Jnp,z

)
= αδ′′ (nd)ndΓd

(
∂f2
∂z

(
1 + i

1 + αθi

)
npη

′
p +

∂f3
∂z

1

θ
ndη

′
d

)
+

∂f1
∂z

(
αδ′′ (nd) Γd −

1

θ
(1− nc,p) η

′
d

)(
1 + i

1 + αθi

)
npη

′
p

(A.53)

det
(
Jnc,p,z

)
=

∂f2
∂z

(
δ′′ (np) Γp −

(
1 + i

1 + αθi

)
nc,pη

′
p

)
αδ′′ (nd)ndΓd

− ∂f3
∂z

δ′′ (np)npΓp

(
αδ′′ (nd) Γd −

1

θ
(1− nc,p) η

′
d

)
+

∂f1
∂z

(
αδ′′ (nd) Γd −

1

θ
(1− nc,p) η

′
d

)(
δ′′ (np) Γp −

(
1 + i

1 + αθi

)
nc,pη

′
p

)
(A.54)

where η′j = η′ (Nf,j).

Differentiating F with respect to κd we note that ∂f1
∂κd

< 0, ∂f2
∂κd

< 0, ∂f3
∂κd

= 0. It follows

from equation (A.51) that ∂nc,p

∂κd
> 0. Note also that as nc,d = 1− nc,p it also follows that

∂nc,d

∂κd
< 0.

Consider the equation for proportion of online trades

∆ = α
(1− ζ) δ (nd)

α (1− ζ) δ (nd) + ζδ (np)
(A.55)

Note that we can take derivatives of this with respect to a generic exogenous variable z.

d∆

dz
=

∂∆

∂nd

∂nd

∂z
+

∂∆

∂np

∂np

∂z
+

∂∆

∂ζ

∂ζ

∂z
+

∂∆

∂z
(A.56)

or alternatively

d∆

dz
= − 1

det (J)

(
∂∆

∂nd

det (Jnd,z) +
∂∆

∂np

det
(
Jnp,z

)
+

∂∆

∂ζ
det
(
Jnc,p,z

))
+

∂∆

∂z
(A.57)

Note that by collecting terms we can rewrite this in the form

d∆

dz
=

∂f1
∂z

B1

B0

+
∂f2
∂z

B2

B0

− ∂f3
∂z

B3

B0

+
∂∆

∂z
(A.58)
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where

B0 = (α (1− nc,p) δ (nd) + nc,pδ (np))
2 det (J) > 0 (A.59)

B1 =− (1− nc,p)nc,p
∂f2
∂nc,p

∂f3
∂np

δ (np)

(
δ (nd)

nd

− δ′ (nd)

)
− nc,p

∂f1
∂nd

∂f3
∂np

δ (np)
δ (nd)

nd

+ (1− nc,p)nc,p
∂f2
∂nd

∂f3
∂nc,p

δ (nd)

(
δ (np)

np

− δ′ (np)

)
+ (1− nc,p)

∂f2
∂nd

∂f1
∂np

δ (nd)
δ (np)

np

(A.60)

B2 =− nc,p
∂f1
∂nd

∂f3
∂nc,p

(
δ (np)

np

− (1− nc,p) δ
′ (np)

)
− ∂f1

∂nd

∂f1
∂np

δ (nd) δ (np)

+ (1− nc,p)nc,p
∂f1
∂np

∂f3
∂nc,p

δ′ (nd) δ (np)

(A.61)

B3 =− (1− nc,p)
∂f1
∂np

∂f2
∂nc,p

(
δ (nd)

nd

− nc,pδ
′ (nd)

)
− ∂f1

∂nd

∂f1
∂np

δ (nd) δ (np)

+ (1− nc,p)nc,p
∂f1
∂nd

∂f2
∂nc,p

δ (nd) δ
′ (np)

(A.62)

and B0, B1, B2, B3 > 0.

First, note that ∂∆
∂κd

= 0 and thus, using the fact that ∂f1
∂κd

< 0, ∂f2
∂κd

< 0, ∂f3
∂κd

= 0 it follows

from equation ( A.58) that d∆
dκd

< 0.

Turning to the entry of digital firms and noting that, Nf,d = (1− nc,p)nd, the derivative

of Nf,d with respect to an exogenous variable z is

∂Nf,d

∂z
= (1− nc,p)

∂nd

∂z
− ∂nc,p

∂z
nd (A.63)

and thus
∂Nf,d

∂z
=

1

det (J)

(
nd det

(
Jnc,p,z

)
− (1− nc,p) det (Jnd,z)

)
(A.64)

which, following some rearranging, can be expressed as

∂Nf,d

∂z
=

1

det (J)

(
∂f1
∂z

C1,d +
∂f2
∂z

C2,d −
∂f3
∂z

C3,d

)
(A.65)

where

C1,d = nd

(
αδ′′ (nd) Γd −

1

θ
(1− nc,p) η

′
d

)
δ′′ (np) Γp (A.66)
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C2,d = nd

(
δ′′ (np) Γp −

(
1 + i

1 + αθi

)
nc,pη

′
p

)
αδ′′ (nd)ndΓd

− (1− nc,p) δ
′′ (np)npΓp

(
1 + i

1 + αθi

)
npη

′
p

(A.67)

C3,d = ndδ
′′ (np)npΓpαδ

′′ (nd) Γd (A.68)

and C1,d, C2,d, C3,d > 0. Again, using the fact that ∂f1
∂κd

< 0, ∂f2
∂κd

< 0, ∂f3
∂κd

= 0 it follows

from equation (A.65) that
∂Nf,d

∂κd
< 0.

Finally, turning to the entry of physical firms and noting that Nf,p = nc,pnp, the derivative

with respect to an exogenous variable z is

∂Nf,p

∂z
=

∂nc,p

∂z
np + nc,p

∂np

∂z
(A.69)

and thus
∂Nf,p

∂z
= − 1

det (J)

(
np det

(
Jnc,p,z

)
+ nc,p det (Jnd,z)

)
(A.70)

which, following some rearranging, can be expressed as

∂Nf,p

∂z
= −∂f1

∂z
C1,p −

∂f2
∂z

C2,p +
∂f3
∂z

C3,p (A.71)

where

C1,p = np

(
αδ′′ (nd) Γd −

1

θ
(1− nc,p) η

′
d

)
δ′′ (np) Γp (A.72)

C2,p = npδ
′′ (np) Γpαδ

′′ (nd)ndΓd (A.73)

C3,p = npδ
′′ (np)npΓp

(
αδ′′ (nd) Γd −

1

θ
(1− nc,p) η

′
d

)
− nc,pαδ

′′ (nd)ndΓd
1

θ
ndη

′
d

(A.74)

and C1,p, C2,p, C3,p > 0. Again, using the fact that ∂f1
∂κd

< 0, ∂f2
∂κd

< 0, ∂f3
∂κd

= 0 it follows

from equation (A.71) that
∂Nf,p

∂κd
> 0. This completes the proof of proposition 1.

Proof of Proposition 2

First, consider the effect of a change in α. Using the fact that in equilibrium, f1 = 0, the

partial derivative of f1 with respect to α can be written

∂f1
∂α

=
1

α
(δ (np)− npδ

′ (np))

(
u (yp)−

(
1 + i+ αθi

1 + αθi

)
u′ (yp) yp

)
(A.75)
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Similarly,
∂f2
∂α

= δ′ (nd) Γd > 0, (A.76)

and using the fact that f3 = 0

∂f3
∂α

=

(
θi

1 + αθi

)
δ′ (np) Γp ≥ 0. (A.77)

Now taking the limit as i → 0 it follows that ∂f1
∂α

> 0 and ∂f3
∂α

= 0. From equation (A.51)

it follows that limi→0

{
∂nc,p

∂α

}
< 0 and also that limi→0

{
∂nc,d

∂α

}
> 0. It follows from

equation (A.65) and equation (A.71) that limi→0

{
∂Nf,d

∂α

}
> 0 and limi→0

{
∂Nf,p

∂α

}
< 0.

Note also that the partial derivative of ∆ with respect to α is positive and thus it follows

from equation (A.58) it follows that limi→0

{
d∆
dα

}
> 0.

Similarly for θ, the partial derivative of f1 with respect to θ is

∂f1
∂θ

= α (δ (nd)− ndδ
′ (nd))

1

θ
u′ (yd) yd − (δ (np)− npδ

′ (np))

(
αi

1 + αθi

)
u′ (yp) yp.

(A.78)

Similarly using the fact that f2 = 0 in equilibrium, derivative with respect to

∂f2
∂θ

= α
1

θ
δ′ (nd)

(
u (yd)−

(
1− θ

θ

)
u′ (yd) yd

)
> 0, (A.79)

and
∂f3
∂θ

= δ′ (np)

(
αi

1 + αθi

)(
u (yp)−

(
(1− αθ) i

1 + αθi

)
u′ (yp) yp

)
≥ 0. (A.80)

Now taking the limit as i → 0 it follows that ∂f1
∂θ

= 0 and ∂f3
∂α

= 0. From equation (A.51) it

follows that limi→0

{
∂nc,p

∂θ

}
< 0 and also that limi→0

{
∂nc,d

∂θ

}
> 0. It follows from equation

(A.65) and equation (A.71) that limi→0

{
∂Nf,d

∂θ

}
> 0 and limi→0

{
∂Nf,p

∂θ

}
< 0. Note also

that the partial derivative of ∆ with respect to α is positive and thus it follows from

equation (A.58) it follows that limi→0

{
d∆
dθ

}
> 0. This completes the proof of propostion

2.
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Proof of Proposition 3

Denote by W̄ the welfare of an equilibrium with CBDC such that γd = 1. It will be useful

to rewrite this in terms of Nf,d, np, and nc,p, in which case this is

W̄ =nc,pδ (np)

(
u (yp)−

(
1 + (1− α)

(
i

1 + i

))
κpȳp

)
− nc,pnp

(
1 + (1− α)

(
i

1 + αθi

))
η (nc,pnp)

+ (1− nc,p) δ

(
Nf,d

1− nc,p

)(
u (yd)−

(
1 + (1− α)

(
i

1 + i

))
κdȳd

)
− (1− nc,p)nd

(
1 + (1− α)

(
i

1 + αθi

))
η (Nf,d) ,

(A.81)

where

ȳj = u′−1

(
1 + i

1 + αθi

)
κj. (A.82)

As shown in section 2.2, in the case where αθ < 1 the optimal level of consumption in

both sectors is achieved through setting i → 0. Similarly, the optimal level of entry can

only be achieved by setting a sector specific tax on entry such that

τj =
Nf,jη

′ (Nf,j)

η (Nf,j)
. (A.83)

Proof of Proposition 4

Consider now the welfare of an equilibrium without CBDC such that γd = 0 and denote

this W . This can be rewritten in terms of Nf,d, np, and nc,p as

W =nc,pδ (np)

(
u (yp)−

(
1 + (1− α)

(
i

1 + i

))
κpyp

)
− nc,pnp

(
1 + (1− α)

(
i

1 + αθi

))
η (nc,pnp)

+ α (1− nc,p) δ

(
Nf,d

1− nc,p

)
(u (yd)− κdyd)

−Nf,dη (Nf,d)

(A.84)

Now consider the derivatives of this with respect to α, κd, and θ.

∂W
∂α

=(1− nc,p) δ (nd) (u
′ (yd)− κdyd) +

∂W
∂nc,p

∂nc,p

∂α
+

∂W
∂Nf,d

∂Nf,d

∂α
> 0 (A.85)

∂W
∂θ

=
∂W
∂nc,p

∂nc,p

∂θ
+

∂W
∂Nf,d

∂Nf,d

∂θ
+

∂W
∂yd

∂yd
∂θ

≥ 0 (A.86)
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∂W
∂κd

=− α (1− nc,p) δ (nd) yd +
∂W
∂nc,p

∂nc,p

∂κd

+
∂W
∂Nf,d

∂Nf,d

∂κd

+
∂W
∂yd

∂yd
∂κd

< 0 (A.87)

where we note that we have the following derivatives in the limit as i → 0

lim
i→0

{
∂W
∂nc,p

}
= −α (δ (nd)− ndδ

′ (nd))

(
1− θ

θ

)
κdyd ≤ 0 (A.88)

lim
i→0

{
∂W
∂Nf,d

}
= αδ′ (nd) (1− θ)u (yd) ≥ 0 (A.89)

lim
i→0

{
∂W
∂yd

}
= α (1− nc,p) δ (nd)

(
1− θ

θ

)
κd ≥ 0 (A.90)

In the case where i → 0 and where the optimal tax τj is levied on entry, note that the

CBDC case will be optimal. The first order conditions of W̄ is

∂W̄
∂α

= 0 (A.91)

∂W̄
∂θ

= 0 (A.92)

Thus any increase in α or θ will increase welfare of the equilibrium without CBDC while

keeping the optimal welfare fixed.

In the case of κd, the optimal welfare is also decreasing in κd as shown below

∂W̄
∂κd

= − (1− nc,p) δ (nd) ȳd < 0. (A.93)

In the limit as θ → 1, it is clear that 0 > ∂W
∂κd

> ∂W̄
∂κd

and thus an improvement in digital

firm productivity increases the welfare gains of introducing a CBDC.
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