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Abstract
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losses banks make in the event of their default. I show that the addition of banking

regulation results in three deviations from the standard theory. First, collateral

is demanded of both high and low risk firms, even in the absence of asymmetric

information. Second, if banking regulation is sufficiently strict, there may not exist

an adverse selection problem. Third, a pooling Nash equilibrium can exist.
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1 Introduction

Following the Financial Crisis of 2007-2008, regulators and policy makers have increased

their focus on ensuring stability in the banking sector. One key tool at the regulator’s

disposal is stress testing, which has become more widely used by regulators since the

financial crisis. The empirical evidence suggests that the use of stress tests by the Federal

Reserve, and other banking regulators can have a negative impact on the lending condi-

tions facing firms. For example, Acharya et al. (2018), focusing on lending to large firms

in the US, find that stress tested banks tend to reduce the quantity of loans supplied to

firms and tend to increase borrowing rates. Similarly, Cortés et al. (2018) complement

this by documenting similar negative effects of stress testing on small business loans.

Specifically, they provide evidence that stress tests conducted under the Comprehensive

Capital Analysis and Review (CCAR) led to a decrease in affected banks’ credit supply to

small business. An overview of the recent history of stress testing in the financial sector

can be found in Dent et al. (2016).

This paper seeks to contribute to the analysis of implementing more stringent banking

regulation such as regulatory stress tests by offering a theoretical model that assesses

the interaction between banking regulation and loan terms in a traditional model of loan

contracts. I propose an adverse selection credit market model with aggregate uncertainty

where firms have private information regarding the riskiness of their project. Firms oper-

ate a decreasing returns to scale production technology and fund their project by obtaining

a bank loan. Banks have limited liability and are able to default on insured depositors.

As banks do not internalize the social cost of default, they lend more than is socially

optimal. This inefficiency can be corrected through banking regulation. I abstract from

the implementation of banking regulation and assume that the government can impose a

constraint on the level of systemic risk directly through a limit on the losses banks make

conditional on their default. The regulatory constraint in my model can be interpreted

as a condition that banks must be able to meet some minimum threshold following a

regulatory stress-test.

The model allows banks flexibility in satisfying the regulatory requirements, they may

reduce the size of the loans they offer, increase interest rates or reduce their loss given

default through demanding more collateral from borrowers. Thus collateral now has two

roles; as in traditional adverse selection models collateral can be used as a screening device

but in addition it may also help the bank satisfy regulatory requirements by reducing the

loss given default of a loan.

This paper highlights a novel channel through which banking regulation may distort

equilibrium lending; the interaction of incomplete information and banking regulation.

The paper has three main theoretical results which are contrary to standard adverse
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selection models. First, I set out conditions under which collateral is demanded of both

high and low risk firms, even in the absence of asymmetric information. Second, if banking

regulation is sufficiently strict, there may not exist an adverse selection problem, as the

difference in loan size at the full information contract is sufficient to separate the two firm

types. Finally, I show that if there is insufficient pledgable collateral, the two firm types

can receive the same contract in equilibrium, that is to say a pooling Nash equilibrium

can exist.

This paper is directly related to the literature on adverse selection in credit markets.

Papers that focus on the use of collateral as a screening device in credit markets featuring

adverse selection include papers such as Stiglitz and Weiss (1981), Bester (1985a) and

Lacker (2001). The addition of variable loan size to signaling models has also been studied

previously by Bester (1985b) and Milde and Riley (1988). The existence of credit rationing

equilibria, though not pooling equilibria, when there is insufficient collateral was raised

by Besanko and Thakor (1987) and Clemenz (1993). This paper also complements the

empirical literature on the impact of regulatory stress testing on bank lending such as

Acharya et al. (2018) and Cortés et al. (2018) by providing a theoretical mechanism

through which more stringent regulation can impact lending outcomes. A related paper

is Estrella (2004) who considers the impact of regulatory restrictions on a bank’s value at

risk on the probability of bank failure in a dynamic setting. His emphasis is on the portfolio

choice of a bank choosing between safe and risky assets. In this paper, I emphasize the

impact of banking regulation on the terms of loan contracts.

The paper is organized as follows. Section 2 presents the model. Section 3 derives the

main results on the loan contracts in a competitive equilibrium. Section 4 discusses the

optimal policy decision of the regulator and section 5 concludes.

2 Model

2.1 Firms and Technology

Consider a credit market with a continuum of risk-neutral firms. Each firm has access to a

project such that an investment of k will yield a cash-flow of ϕkα if successful and zero if it

fails. The curvature parameter α ∈ (0, 1) is such that the cash-flow of a successful project

features decreasing returns to scale and the productivity parameter ϕ > 0 is common to

all firms. There exists two types of firms indexed by i ∈ {L,H} that differ in the success

probability of their projects. The probability a firm’s project is successful is denoted by

pi with 0 < pH < pL < 1 implying that H-type firms are high risk and feature a lower

probability of success than low risk (L-type) firms. The fraction of firms of type i is
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denoted by µi ∈ (0, 1) with
∑

i µi = 1. The distribution of firms in the economy is public

information.

Firms receive a known end-of-period endowment W > 0. The timing of the endowment

means firms cannot use the endowment to invest in a project but instead must obtain a

loan. Banks make loan offers to firms that consist of a loan size ki ≥ 0, an interest rate

Ri ≥ 0 and an amount of pledged collateral Ci ∈ [0,W ]. The collateral is the amount of

the firm’s endowment sacrificed by the firm if it defaults on the loan payment Riki.

In addition to the firm type, the probability of a project being successful also depends on

the realization of an aggregate state z ∈ {zB, zG}. The aggregate state zG occurs with

probability q ∈ (0, 1) and zB with probability 1 − q. I denote the probability of firm

i’s project being successful conditional on z as pi (z). The probability of a project being

successful is higher in the ’good’ state (zG) than in the ’bad’ state (zb) for both firm types

such that

0 < pi (zB) < pi (zG) < 1 ∀i ∈ {L,H} . (1)

It follows from above that the expected probability of firm i’s project being successful can

be written as follows

pi = qpi (zG) + (1− q) pi (zB) . (2)

To simplify the analysis, I assume that the ratio of success probabilities conditional on

zG and zB is the same across firm types such that

pi (zB)

pi (zG)
= ξ ∀i ∈ {L,H} , (3)

where it follows from equation (1) that ξ ∈ (0, 1). It is assumed that the aggregate state

is not known at the beginning of the period and thus loan contracts made between the

bank and the firm cannot be made contingent on the realization of z.

The expected utility firm i receives from a loan contract (ki, Ri, Ci) is

Ui (ki, Ri, Ci) = pi [ϕk
α
i −Riki]− (1− pi)Ci +W. (4)

To simplify the later analysis, I define the payoff the firm receives from a successful project

as π (k,R) = ϕkαi − Riki. The firm’s marginal rate of substitution between the payoff

from a successful project π and the collateral pledged is

dπ

dC

∣∣∣∣
Ui

=
1− pi
pi

. (5)

As the marginal cost of collateral is lower for low-risk firms than high-risk firms, banks

will be able to use collateral to screen between unobservable firm types.
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2.2 Banking Sector and Regulation

There exists a large number of risk-neutral banks that fund loan contracts through de-

posits. Deposits are fully insured by the government and depositors earn a risk-free return

which for simplicity is normalized to 1. Banks have limited liability and default on de-

positors if the proceeds from lending are less than what banks owe their depositors. If

banks default, depositors are compensated by the government. The government does not

charge banks an insurance premium but instead funds the deposit insurance by a lump-

sum tax on firm profits.1 A contract (ki, Ri, Ci) that is accepted by firms of type-i will

earn expected profit per firm before fixed costs of

Vi (ki, Ri, Ci) = q (pi (zG)Riki + δ (1− pi (zG))Ci − ki)
+ (1− q) max {pi (zB)Riki + δ (1− pi (zB))Ci − ki, 0} , (6)

where δ ∈ (0, 1) is a discount parameter on collateral implying that the use of collateral

in a loan contract is costly. The parameter δ can be thought of as a reduced form

way of capturing the agency and liquidation costs of transferring collateral to the banks.

Competition in the banking sector will drive profits towards zero but I assume that banks

do not default following the realization of the good aggregate state zG. However, due to

limited liability banks may default following the realization of zB. I further assume that

if a loan contract is accepted by at least one firm, it is accepted by a representative mass

of firms, such that the law of large numbers holds. This assumption ensures that bank

default would only occur due to aggregate risk and not due to the idiosyncratic firm risk.

If banks default following the realization of zB, the government levies a lump-sum tax τ

on firms in order to make depositors whole again. Due to the presence of this deposit

insurance banks do not fully endogenize the cost of default. In order to address the

resulting externality I assume that the government can impose the following restriction

on the riskiness of bank borrowing

pi (zB)Riki + δ (1− pi (zB))Ci ≥ γki, (7)

where γ ∈ (0, 1) is a parameter chosen by the government that determines how strict the

regulatory regime is. This regulatory constraint (7) is equivalent to stating that the bank

only defaults on a fraction (1− γ) of deposits if the bad aggregate state zB is realized.

The regulatory constraint set out by equation (7) is equivalent to requiring banks to pass a

regulatory stress-test, with the parameter γ capturing how strict this stress-test is. Recent

1In this paper I do not consider the optimality of deposit insurance or who should pay for it. While
this is an obvious limitation, the key message of this paper should remain unchanged so long as banks
do not fully endogenize the cost of default and thus there is a role for banking regulation to address this
externality.
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empirical studies such as Acharya et al. (2018) and Cortés et al. (2018) find that banks

that fail stress tests adjust their lending in response. Furthermore, if the bank is publicly

traded on a stock market, fully disclosing stress-test results as in the US is likely to create

a strong incentive for the management of the bank to ensure the regulatory stress test is

passed.

I focus on subgame perfect Nash equilibria of the following three-stage variant of the

Rothschild and Stiglitz (1976) screening game. In the first stage, the government chooses

the regulatory parameter γ. In the second stage, banks offer a single loan contract to

firms. In the third stage, firms choose a single loan contract among those on offer. In

this paper I discuss the existence of both separating and pooling Nash equilibria. A

Nash equilibrium is a set of contracts {(ki, Ri, Ci)}i∈{L,H} such that i) each contract earns

non-negative profits for the bank, ii) the regulatory constraint defined by equation (7) is

satisfied and iii) there exists no other set of contracts which, when offered in addition to

the existing set of contracts which all earn non-negative profits with at least one offering

strictly positive profits. I will consider both separating and pooling equilibria, a Nash

equilibrium is separating if (kL, RL, CL) 6= (kH , RH , CH) and is a pooling equilibrium

otherwise.

3 Competitive Equilibrium

3.1 Equilibrium with identical customers

I first examine the case where there is a single type of firm and as a result banks have

perfect information regarding the quality of the firms they are lending to. For an economy

that consists of a single firm of type i, a competitive equilibrium must feature a contract

that satisfies the regulatory constraint and ensures that banks make non-negative profits.

A preliminary step in describing the equilibrium is to characterize the set of contracts

that satisfy these two constraints in (π,C)-space. I will refer to this set as the feasible

set.

First, I consider the case where the regulatory constraint is slack. In this case, the only

constraint on the set of feasible contracts offered is that banks must make non-zero profits.

Then the maximum payoff π that can be promised to firm i for a given pledge in collateral

C that satisfies the following constraint binds

pi (zG)Riki + δ (1− pi (zG))Ci − ki ≥ 0, (8)

which is simply the constraint that banks make non-negative profits if zG is realized given

that they default if zB is realized. If banks did not default following zB then that would
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imply that they would make non-negative profits following the realization of zB, but then

a competing bank could offer a lower interest rate Ri and thus a higher π such that

equation (8) is satisfied while defaulting on any losses they make in zB. By maximizing

equation (4) subject to equation (8) we can find the payoff maximizing loan size as

k̄i = (αϕpi (zG))
1

1−α . (9)

Assuming (8) binds, this can be substituted this into equation (7) to yield the following

inequality

Ci ≥
1

δ

(
γ − ξ
1− ξ

)
ki. (10)

An immediate corollary of equation (10) is that the regulatory constraint will be satisfied

for all Ci ≥ 0 whenever γ ≤ ξ. This establishes a lower-bound for γ below which the reg-

ulatory constraint will have no effect on the equilibrium. Furthermore, even if regulation

is sufficiently high such that γ > ξ, if the collateral specified in the contract is sufficiently

high, then the regulatory constraint will not bind. Specifically, there exists a cutoff level

of collateral C̄i such that for any Ci > C̄i there is sufficient collateral to ensure that the

regulatory constraint will be slack when banks offer a loan size of k̄i. This cutoff is defined

by the following equation

C̄i =
1

δ

(
γ − ξ
1− ξ

)
k̄i. (11)

Next, I consider the possibility that the regulatory constraint binds but where equation

(8) is slack. By maximizing equation (4) subject to equation(7) we can find the payoff

maximizing loan size as

ki = (αϕpi (zB))
1

1−α . (12)

It follows from the above discussion that if γ > ξ and collateral is sufficiently low, banks

offer a loan size equal to ki and make strictly positive profits to ensure that the regulatory

constraint binds. Specifically, there exists a cutoff level of collateral Ci such that for any

Ci < Ci there is insufficient collateral available for competition to drive bank profits to

zero while ensuring that the regulatory constraint will be satisfied. This cutoff is defined

by the following equation

Ci =
1

δ

(
γ − ξ
1− ξ

)
ki. (13)

To understand this somewhat puzzling case, note that there are three dimensions along

which contracts can be adjusted in order to meet the regulatory requirement; the loan

size, the quantity of collateral and the interest rate. When the quantity of collateral is

sufficiently low, firms would trade off a higher interest rate for a larger loan and thus

allowing banks to make positive profits on an accepted contract.
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πππ
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Πi(C)

C̄C

k

k ∈ (k, k̄)

∂k
∂C > 0

k̄

Figure 1: Set of feasible contracts for firm i

By assumption pi (zB) < pi (zG), thus it follows that ki < k̄i and Ci < C̄i. Thus when

γ > ξ there exists a range of collateral C ∈
(
Ci, C̄i

)
, where in order to maximize the payoff

to firms, both equations (7) and (8) bind. The loan size can be found by rearranging the

two binding constraints to get ki = δ
(

1−ξ
γ−ξ

)
Ci such that this loan size is increasing in

collateral and lies between the upper- and lower-bounds for the loan sizeki and k̄i.

The boundary of the feasible set of contracts on the interior of R2
+ can be summarized by

the function Πi (C) that denotes the maximum payoff that can be offered to firms as a

function of collateral . This function is characterized as follows

Πi (C) =


ϕkα − γ

(
1

pi(zB)

)
k + δ

(
1−pi(zB)
pi(zB)

)
C when C < Ci and γ > ξ

ϕ
[
δ
(

1−ξ
γ−ξ

)
C
]α
− δ

[
1

pi(zG)

(
1−γ
γ−ξ

)
+ 1
]
C when Ci ≤ C ≤ C̄i and γ > ξ

ϕk̄α − 1
pi(zG)

k̄ + δ
(

1−pi(zG)
pi(zG)

)
C otherwise.

(14)

The set of feasible contracts is illustrated graphically for the case where γ > ξ in figure 1.

Equation (14) denotes the largest possible payoff π that can be offered to firm i condi-

tional on a collateral level C. As firm utility is strictly increasing in π, the competitive

equilibrium is simply the point on equation (14) that maximizes firm utility.

In the case where γ ≤ ξ, the regulatory constraint is always slack and the competitive

equilibrium with identical customers is analogous to that in the Rothschild and Stiglitz

(1976) case. The function Πi (C) is linear in C and with a gradient of δ
(

1−pi(zG)
pi(zG)

)
, which
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πππ
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C∗
i

Figure 2: Competitive equilibrium with single firm type

is strictly lower than the gradient of firm i’s indifference curves set out in equation (5)

and thus the equilibrium contract will feature Ci = 0.

When γ > ξ, equation (14) is weakly concave in C and the gradient at Ci = 0 is

δ
(

1−pi(zB)
pi(zB)

)
. A sufficient condition for the competitive equilibrium to feature Ci > 0

is that δ
(

1−pi(zB)
pi(zB)

)
is strictly larger than the marginal rate of substitution of firm i, which

holds whenever

δ >

(
pi (zB)

1− pi (zB)

)(
1− pi
pi

)
. (15)

If the cost of collateral is sufficiently low, then the equilibrium will feature positive col-

lateral; the inequality set out in equation 15 will be satisfied as δ → 1. If equation 15

is satisfied, the competitive equilibrium will be the point of tangency between equation

(14) and firm i’s indifference curves. This is illustrated graphically in figure 2 where C∗i

denotes the collateral level at the competitive equilibrium.

This result is set out more formally in the following proposition.

Proposition 1. If γ > ξ, δ >
(

pi(zB)
1−pi(zB)

)(
1−pi
pi

)
and W is sufficiently high, the com-

petitive equilibrium contract for an economy featuring a single type of firm will feature

strictly positive collateral C∗i > 0 and a loan size k∗i < k̄ where C∗i and k∗i are given by the
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following equations

k∗i =

 αpiϕ

[q + (1− q) γ] +
(

1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)
 1

1−α

, (16)

C∗i =
1

δ

(
γ − ξ
1− ξ

)
k∗i , (17)

and the payoff that the firm receives from the competitive equilibrium contract is

π∗i =

(
1− α
α

)[
(q + (1− q) γ) +

(
1− η
η

)
(1− pi)

(
γ − ξ
1− ξ

)]
k∗i (18)

Proof. See Appendix.

In words, proposition 1 states that if the regulatory constraint is sufficiently strict and

the cost of pledging collateral is sufficiently low, the competitive equilibrium will feature

positive collateral even in the case of a single firm type. The reason for this is that pledging

collateral, while costly, increases the loan size that firms are able to receive. Another

key property of the equilibrium is that the loan size k∗i is decreasing in γ and thus the

government is able to affect the size of firm loans through the regulatory constraint.

In order to focus on the novel aspects of this model, from now on I assume first that γ > ξ

such that the regulatory constraint is a relevant consideration for agents and second that

equation (15) is satisfied so that firms are willing to use collateral to ensure that their

credit contract satisfies any regulatory constraint.

3.2 Separating equilibrium with asymmetric information

I now return to the case of asymmetric information where there are two firm types i ∈
{H,L} and a firm’s type is known only to itself. Banks are unable to condition contracts

on the firm type. Instead, in a separating equilibrium, there are two distinct contracts

{(ki, Ri, Ci)}i∈{L,H} chosen by firms in equilibrium, with each contract being chosen by

a single firm type. In order for this to occur, firms must self-select into the contract

intended for them and thus the following two incentive compatibility constraints must

hold in equilibrium

pH [ϕkαH −RHkH ]− (1− pH)CH ≥ pH [ϕkαL −RLkL]− (1− pH)CL, (19)

and

pL [ϕkαL −RLkL]− (1− pL)CL ≥ pL [ϕkαH −RHkH ]− (1− pL)CH . (20)
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To see which of these constraints is likely to bind, first note that if there is sufficient

collateral the separating contract will lie on the boundary of the feasible set. Furthermore,

for any loan that is not fully collateralized, ΠL (C) > ΠH (C) and thus at a given C the

separating payoff available to low-risk firms will be higher than that of high-risk firms.

This can be shown by noting that if the amount of collateral is held fixed, low-risk firms

can receive the same loan size as high-risk firms at a lower interest rate without violating

either the zero profit condition or the regulatory constraint. Thus ΠH must lie on the

interior of the feasible contract set for L-type firms. It follows immediately from this that

the relevant incentive compatibility constraint to consider is equation (19). Low-risk firms

will never prefer a contract intended for high-risk firms and equation (20) will always be

satisfied in equilibrium.

In contrast to a more standard adverse selection model, equation (19) may not always

bind. To see this, consider the following equation which can be found by substituting in

the full information contracts {(k∗i , R∗i , C∗i )}i=∈{L,H} into equation (19) and rearranging

Γ (γ) = (1− α)

(
pH
pL

) α
1−α

 [q + (1− q) γ] +
(

1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
[q + (1− q) γ] +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)


α
1−α

+ α

(q + (1− q) γ) +
[(

1−δ
δ

)
(1− pL) + 1

δ

(
pL
pH
− 1
)](

γ−ξ
1−ξ

)
[q + (1− q) γ] +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
− 1. (21)

When Γ (γ) ≥ 0, the incentive compatibility constraint is slack and the contracts {(k∗i , R∗i , C∗i )}i=∈{L,H}
constitute the Nash equilibrium with imperfect information. On the other hand, if

Γ (γ) < 0, the incentive compatibility constraint will bind and low-risk firms must pledge

a higher quantity of collateral in order to separate from high-risk firms.

The limit of Γ (γ) as γ → ξ is negative, thus if the regulatory constraint was removed, the

incentive compatibility constraint would always bind. In this case, the full information

contracts do not require any collateral to be pledged and, as ΠL (0) > ΠH (0), it follows

that equation (19) will bind. The limit of Γ (γ) as γ → 1 is

lim
γ→1

Γ (γ) = (1− α)

(pH
pL

) α
1−α
(

1 +
(

1−δ
δ

)
(1− pL)

1 +
(

1−δ
δ

)
(1− pH)

) α
1−α

− 1


+ α

 1
δ

(
pL
pH
− 1
)

1 +
(

1−δ
δ

)
(1− pL)

 . (22)

The sign of equation (22) depends on the parameters of the model but is positive as α→ 1

indicating that as the returns of the firm projects increases, a sufficiently strict regulatory
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constraint will result in the incentive compatibility constraint being slack. This occurs

because as γ increases, π falls and C increases to ensure that the regulatory constraint is

met. As the marginal rates of substitution between π and C differ across firms, at high

levels of γ, firms may separate purely based on their optimal trade-off between π and

C. While this means that sufficiently strict banking regulation may resolve the adverse

selection problem, it may not do so in a socially optimal way due to collateral being costly.

The proposition below summarizes this discussion more formally.

Proposition 2. If γ ≥ ξ, δ ≥
(

pH(zB)
1−pH(zB)

)(
1−pH
pH

)
and W ≥ C∗L, a necessary and sufficient

condition for the incentive compatibility constraint of high-risk firms to bind for any value

of γ ∈ [ξ, 1) is that limγ→1 Γ (γ) < 0. Otherwise there exists a cutoff γ∗ ∈ [ξ, 1) such

that for any γ > γ∗ the incentive compatibility constraints will not bind and the contracts

{(k∗i , R∗i , C∗i )}i=∈{L,H} constitute the Nash equilibrium.

Proof. See Appendix.

Should equation (19) bind the separating contracts can then be illustrated graphically. In

the separating equilibrium high-risk firms receive the same contract as they would in a

single-type equilibrium and that the separating contract for low-risk firms, can be found

as the point on the frontier ΠL (C) at which high-risk firms are indifferent between this

contract and their separating contract (k∗H , R
∗
H , C

∗
H). I denote the separating contract

offered to low-risk firms by
(
k̂L, R̂L, ĈL

)
. As this contract must lie on the boundary

of the feasible set, it follows from rearranging equation (19) that C∗H and ĈL have the

following relationship

ΠL

(
ĈL

)
= ΠH (C∗H) +

(
1− pH
pH

)(
ĈL − C∗H

)
. (23)

An example of a separating contract is illustrated in figure 3.

For brevity, I omit the precise contract terms for low-risk firms in the case where equation

(19) binds as their formulation depends on whether ĈL is larger than C̄L or not. However,

from the properties of the boundary of the feasible set, Πi, set out earlier, it follows that the

separating contract will feature a strictly larger loan size relative to the full-information

contract, that is k̂L > k∗L.

As pointed out by Rothschild and Stiglitz (1976) and Wilson (1977), a Nash equilibrium

is not guaranteed to exist in an economy that features asymmetric information. This

occurs when a pooling contract Pareto dominates separating contracts and thus would

be preferred to the separating contract by both types of firms. Due to the curvature of

the production function, the precise conditions required for the existence of a separating

equilibrium cannot be found in closed form. However, even in the case where a Nash

12



0

πππ

CCC

ΠH(C)

ICH

C∗
H

ΠL(C)

ĈL

Figure 3: Asymmetric Information Contracts

equilibrium does not exist, the separating equilibrium discussed in this section will exist

as a Riley reactive equilibrium as set out in Riley (1979). Similarly, a pooling equilibrium

would exist as a Wilson anticipatory equilibrium as in Wilson (1977).

3.3 Equilibrium when the wealth constraint binds

The analysis of the previous section assumed that available collateral W was sufficient so

that the required collateral for separation could be supplied. I now discuss the equilibrium

contracts under asymmetric information in the case where W is sufficiently low that the

separating contract discussed earlier cannot be implemented.

First, consider the case where W is sufficiently large that C∗H < W but not so large

that the low-risk firms can provide the level of collateral required for screening and thus

ĈL > W . Then incentive compatibility requires that the kL and RL offered to the low-risk

firm are such that the payoff low-risk firms receive is

π̃L = ΠH (C∗H) +

(
1− pH
pH

)
(C∗H −W ) . (24)

In a separating equilibrium when the wealth constraint binds, the low-risk firm’s contract

lies off the boundary of the feasible set of contracts and thus π̃L < ΠL (W ). The firm is

indifferent between any pair of contract terms (kL, RL) which yields the payoff π̃L specified

above and banks will choose the combination of kL and RL that maximizes their profit
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subject to the regulatory constraint and supplying the firm a payoff of π̃L. This possibility

is illustrated in figure 4a.

When the upper-bound on collateral binds there is the possibility that a pooling Nash

Equilibrium exists. In a pooling equilibrium both high- and low-risk firms accept the

same contract (kP , RP , CP ). The pooling contract can be found in an analogous way to

the equilibrium contract with a single firm type where the single firm type is composed of

both high-risk and low-risk firms. The expected probability of success for this composition

conditional on aggregate state z is simply a weighted average of the success probabilities

for high- and low-risk firms, weighted by the proportion of that firm type in the economy

pP (zj) = µHpH (zj) + µLpL (zj) ∀j ∈ {G,B} .

Similarly, the unconditional expected probability of success is also a weighted average of

the success probabilities of the high- and low-risk firms

pP = µHpH + µLpL.

It follows that the boundary of the set of feasible pooling contracts, ΠP (C), is simply

Πi (C) for the composite type P .

For a pooling contract (kP , RP , CP ) to exist as a Nash Equilibrium, there must exist no

deviating contract that would satisfy equations (7) and (8) which would resulting in the

pooling contract becoming either unprofitable or violate the regulatory constraint. That

is, there cannot exist a cream-skimming contract that will attract only low-risk firms.

A necessary condition for the existence of a pooling contract is for both high- and low-risk

firms to prefer the pooling contract to the best separating contract available, otherwise

firms would choose a separating contract over the pooling contract. Similarly, any pooling

contract must lie on the boundary ΠP of pooling contracts, otherwise a better pooling

contract could be found that would be preferred by at least one firm type.

A further necessary condition is that the upper-bound on collateral binds at the pooling

contract such that CP = W . In this case, no contract with higher collateral can be offered

to low-risk firms and thus there exists no cream-skimming contract. A sufficient condition

for the existence of a pooling equilibrium is that C∗H ≤ W such that the separating con-

tract for high-risk firms features a (weakly) binding wealth constraint. Then the pooling

contract will lie strictly above the high-risk separating contract and no cream-skimming

deviation exists. An example of a pooling contract existing as a Nash equilibrium is il-

lustrated in figure 4b. The precise terms of the pooling contract, as in the separating

case, depend on where the boundary of feasible contracts intersects CP = W . A sufficient

condition for the existence of a pooling contract is W ≤ C∗H . This is summarized in the

14
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ΠH(W )

ΠP(C)

ΠP(W )

(b) Pooling Contract

Figure 4: Contracts with binding wealth constraint
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proposition below.

Proposition 3. If γ > ξ, δ >
(

pH(zB)
1−pH(zB)

)(
1−pH
pH

)
and W ≤ C∗H then a Nash equilibrium

will consist of a single pooling contract (kP , RP , CP ) offered to both firms and where CP =

W and π = ΠP (W ).

Proof. It follows from proposition 1, that if γ > ξ and δ >
(

pH(zB)
1−pH(zB)

)(
1−pH
pH

)
that the

high-risk firm’s collateral in equilibrium will ideally beC∗H > 0 and is defined by equation

(17). Furthermore, it follows immediately from equation (14) that ΠP (C) > ΠH (C) ∀C ≤
C∗H . Thus ifW ≤ C∗H then ΠP (W ) > ΠH (W ) and high-risk firms prefer a pooling contract

that lies on the frontier ΠP (W ) over the best possible separating contract. It follows from

the relative slope of the firm indifference curves that the only possible separating contract

must offer low-risk firms both a higher payoff and higher collateral, but this would violate

the restriction that CL ≤ W .

In the classic Rothschild and Stiglitz (1976) screening game, a cream-skimming contract

will always exist so long as W > 0. This is because no collateral is pledged by the

pooling contract and thus there will always exist a deviating contract that features higher

collateral and a higher payoff that would allow low-risk firms to separate from high-risk

firms. The introduction of a regulatory constraint in my model means that collateral may

be non-zero in the pooling contract and thus W > 0 is no longer a sufficient condition to

ensure that a cream-skimming deviation exists.

4 Optimal Policy

4.1 Overview

Until this point, the regulatory parameter, γ, was taken as given. In this section, I

consider the optimal policy decision of the government that can only affect the economy

through the regulatory constraint described in equation (7).

For the sake of both brevity and simplicity, I restrict this section to the discussion of

the separating equilibrium. In particular, I assume that i) δ >
(

pi(zB)
1−pi(zB)

)(
1−pi
pi

)
so that

both firms will pledge collateral; ii) there is sufficient wealth that any contract can be

implemented; iii) parameters are such that a Nash equilibrium always exists; and iv)

limγ→1 Γ (γ) < 0 such that the incentive constraint always binds.

As discussed earlier if γ ≤ ξ the regulatory constraint will no longer bind and the model

will collapse to a standard adverse selection model. Thus, without loss of generality, I

restrict the government’s decision to choosing a parameter γ ∈ [ξ, 1).
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I now turn to the objective function of the government, which is assumed to be benevolent

and maximizes the welfare of a risk-neutral household that owns both firms and banks.

In order to provide deposit insurance, the bank levies a lump-sum tax τ on households.

The objective function for the planner is thus

U =
∑
i

µi (Ui (ki, Ri, Ci) + Vi (ki, Ri, Ci))− (1− q) τ, (25)

where Ui (ki, Ri, Ci) is the firm expected profit set out in equation (4) and Vi (ki, Ri, Ci)

is the expected profit of a bank contract set out in equation (6). The lump-sum tax τ is

set to exactly cover the losses of the depositors in expectation and is set such that

τ = max

{∑
i

µi (ki − pi (zB)Riki − δ (1− pi (zB))Ci) , 0

}
. (26)

Substituting the equation for τ into the government’s objective function yields the fol-

lowing equation

U =
∑
i

µi (piϕk
α
i − (1− δ) (1− pi)Ci − ki +W ) . (27)

A useful benchmark to consider is the first-best contract under full-information, if the

planner could choose directly the contracts provided to firms. Maximizing the above

results in the following

kFBi = (αpiϕ)
1

1−α and CFB
i = 0.

Comparing this to the competitive equilibrium under full information as set out in propo-

sition 1, the collateral level will be higher than optimal whenever γ > ξ while the loan

size will be higher than optimal whenever γ < ξ+ (1−q)(1−ξ)
(1−q)+( 1−δ

δ )(1−pi)( 1
1−ξ)

. The over-lending

problem occurs because, due to the presence of deposit insurance, banks do not fully en-

dogenize the cost of default. Instead, risk-shifting takes place and banks maximize profits

only in states where they do not default. The government can reduce this over-lending

problem by raising γ but does so at the cost of imposing higher collateral requirements

on firms. As δ < 1, collateral is assumed to be costly and thus the government faces

a trade-off between reducing excessive lending and increasing the dead-weight loss from

collateral usage.

4.2 Optimal Policy with a single firm type

To begin, I start by discussing the properties of the optimal policy decision in an econ-

omy with a single firm type. In this case, rewriting equation (27) yields the following
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optimization problem for the government

Ui = max
γ
{(piϕ (k∗i )

α − (1− δ) (1− pi)C∗i − k∗i +W )} , (28)

where k∗i and C∗i are defined in proposition 2.

The partial derivative of equation (28) with respect to the policy parameter γ is

∂Ui
∂γ

=
(
piϕαk

α−1
i − 1

) dk∗i
dγ
− (1− δ) (1− pi)

dC∗i
dγ

. (29)

At the first-best loan size, the marginal product of the project with respect to the loan

size equals the interest rate and thus piϕαk
α−1
i = 1. As the derivative of k∗i with respect

to γ is negative, equation (29) states that at the optimal policy, the loan size will only

be at the first best if at this point
dC∗

i

dγ
= 0. In the appendix, I show that this will only

occur if (q + (1− q) ξ) = α. While it may seem surprising that it could be optimal for

the government to set the loan size lower than first-best when there is an over-borrowing

problem, it follows from the fact that while the collateral to loan ratio is increasing in γ,

the absolute quantity of collateral C∗i may not be increasing in γ. Thus if, around the

first-best loan size an increase in γ will reduce the quantity of costly collateral used, then

it will be optimal to further increase regulation at the expense of a lower loan size than

in the first-best.

4.3 Optimal Policy with two firm types

I now return to the case of two firm types and where banks are unable to observe the

firm type. The government then seeks to maximize equation (27) subject to the incentive

compatibility constraint set out in equation (19) and the contract terms that firms receive

in equilibrium. In a separating equilibrium the high-risk firm will receive (k∗H , R
∗
H , C

∗
H) as

described in proposition 2. The low-risk firm receives a separating contract denoted by(
k̂L, R̂L, ĈL

)
where R̂L and ĈL can be found from equations (8) and (19) and k̂L is given

by the following equation

k̂L =

δ
(

1−ξ
γ−ξ

)
ĈL if ĈL < C̄L

(αϕpL (zG))
1

1−α otherwise.
(30)
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The derivative of the government’s optimization problem is

∂U
∂γ

= µH
(
pHϕα (k∗H)α−1 − 1

) dk∗H
dγ
− µH (1− δ) (1− pH)

dC∗H
dγ

− µL
[(

1− pLϕαkα−1
L

) ∂k̂L
∂ĈL

+ (1− δ) (1− pL)

]
dĈL
dγ

. (31)

To simplify the analysis, I substitute out the derivatives of the high-risk firm contract and

use equation (31) to define the following function

φ ≡ µH

(
1

1− α

)
(1− q)

(
1 +

(
1− δ
δ

)
(1− pH)

)
kH

pHϕα [kH ]α−1

− µH
(

1

1− α

)(
(1− q) + (1− α)

(
1− δ
δ

)
(1− pH)

(
1

1− ξ

))
kH

− µL
[(

1− pLϕαkα−1
L

) ∂k̂L
∂ĈL

+ (1− δ) (1− pL)

]
dĈL
dγ

. (32)

The government’s optimal policy solution is then to find a value of γ such that φ = 0.

There are now two separate cases to consider, depending on whether ĈL is less than C̄L

or not.

In the case where ĈL ≥ C̄L, the size of the loan given to low-risk firms will not be affected

by changes in collateral and so ∂k̂L
∂ĈL

= 0. Furthermore, any increase in γ will result in a

larger collateral requirement for low-risk firms as dCL
dγ

> 0. From inspecting equation (32)

it is clear that the optimal value of γ will be strictly lower than would be set optimally if

the economy consisted of only high-risk firms. Intuitively, this is because increasing γ will

only affect the loan size of high-risk firms but comes with an additional cost of raising the

amount of costly collateral that low-risk firms must pledge. The optimal level of γ can be

solved for analytically however, I leave this for the appendix.

In the case where ĈL < C̄L, the loan size is now increasing in the amount of collateral

provided and ∂k̂L
∂ĈL

> 0 while an increase in γ still increases the amount of collateral that

is required by ĈL. In the appendix it is shown that the dCL
dγ

is now strictly larger than

it would be in a case where ĈL ≥ C̄L. From equation (32), this implies that a move

from a point where ĈL ≥ C̄L to a point where ĈL < C̄L will lower φ and thus there is at

most one point where φ = 0 ensuring that there is a single value of γ that maximizes the

government’s objective function.

19



5 Conclusion

This paper analyzed credit market equilibrium under private information when banks

face a regulatory constraint that restricts the losses they can make in a recession. As in

standard signaling models, borrowers are able to signal their type through both loan size

and collateral in order to receive a lower loan interest rate. The addition of a regulatory

constraint adds an additional consideration for banks as higher collateral requirements

will also reduce the loss given default.

I highlight the interaction between the signaling problem and banking regulation. In

particular several results differ significantly from more standard signaling models. First,

collateral may be demanded of both high- and low-risk firms, even in the absence of

asymmetric information. Secondly, if banking regulation is sufficiently strict, there may

not exist an adverse selection problem. Additionally, if borrowers have sufficiently low

pledgable collateral, a pooling equilibrium may exist as a Nash equilibrium. This last

result highlights how regulation may distort bank lending in ways that can have negative

distributional effects, through disrupting the ability of bank to screen borrowers.
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Appendix

Proof of Proposition 1

In this proof we assume that W is sufficiently high that any quantity of collateral can be

implemented in equilibrium. The Lagrangian that solves for the competitive equilibrium

contract for an single firm type is

Li = pi (ϕk
α
i −Riki)− (1− pi)Ci +W

+ qλB [pi (zG)Riki + δ (1− pi (zG))Ci − ki]
+ λS [pi (zB)Riki + δ (1− pi (zB))Ci − γki]
+ λ−CCi, (A.33)

where λS, λB and λ−C are the multipliers on equations (7), (8) and the non-negativity

constraint on collateral. The first order conditions are

pi = λBqpi (zG) + λSpi (zB) , (A.34)

(1− pi) = λBqδ (1− pi (zG)) + λSδ (1− pi (zB)) + λ−C , (A.35)

pi
(
αϕkα−1

i −Ri

)
+ λBq [pi (zG)Ri − 1] + λS [pi (zB)Ri − γ] = 0. (A.36)

First note that if the stress-test condition does not bind, λS = 0 and the contract terms

that solve the first order conditions are given by Ci = 0,Ri = 1 and ki = (αpi (zG))
1

1−α .

Plugging these equations into equation (7), the regulatory constraint will be satisfied only

if γ ≤ ξ.

Next, we verify when λB will be strictly positive. To do this, suppose instead that λB = 0,

then equation (A.34) implies that λS = pi
pi(zB)

. Substituting this into equation (A.35) and

rearranging yields

(1− pi) = δpi

(
1− pi (zB)

pi (zB)

)
+ λ−C . (A.37)

This yields a contradiction whenever δ >
(

pi(zB)
1−pi(zB)

)(
1−pi
pi

)
. Thus it follows that if γ > ξ

and δ >
(

pi(zB)
1−pi(zB)

)(
1−pi
pi

)
then λS > 0, λB > 0 and λ−C = 0. Thus equations (7) and

(8) will bind in equilibrium and the equilibrium will feature a strictly positive amount of

collateral. Solving the system of first order conditions then yields the equilibrium loan

size and collateral size set out in equations (16) and (17). The interest rate charged to the

firm follows from substituting equations (16) and (17) into equation (8) and the payoff π∗i

follows from substituting the contract terms into π (k,R) = ϕkαi −Riki.
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Proof of Proposition 2

First, if γ ≥ ξ, δ ≥
(

pH(zB)
1−pH(zB)

)(
1−pH
pH

)
and W ≥ C∗L then the equilibrium contracts if the

incentive compatibility constraint does not bind are given by {(k∗i , R∗i , C∗i )}i=∈{L,H}. Then

equation (21) can be derived by substituting these contract terms into equation (19) and

rearranging. If for some value of γ equation (21) is weakly positive, then the incentive

compatibility will not bind at γ, otherwise, it will. As discussed in the text, the limit of

Γ (γ) as γ → ξ is negative and the incentive compatibility constraint will always bind for

γ ≤ ξ. On the other hand, from equation (22) it is clear that the incentive compatibility

constraint may become slack as γ → 1.

The rest off the proposition follows so long as ∂Γ(γ)
∂γ

> 0 as in this case, either limγ→1 Γ (γ) ≥
0 and there exists a threshold γ∗ ∈ [ξ, 1) such that for any γ > γ∗ Γ (γ) ≥ 0 or for all

γ ∈ [ξ, 1) Γ (γ) < 0.

To show that ∂Γ(γ)
∂γ

> 0 note that the derivative of equation (21) with respect to γ can be

written as

∂Γ (γ)

∂γ
= α

(
pH
pL

) α
1−α

(pL − pH)

(
q + (1− q) ξ

1− ξ

)

×

 [q + (1− q) γ] +
(

1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
[q + (1− q) γ] +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)


1
1−α

+ α

 (q + (1− q) ξ) 1
δ

(
pL
pH
− 1
)(

1
1−ξ

)
[
[q + (1− q) γ] +

(
1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)]2


×

1− pH
(
pH
pL

) α
1−α

 [q + (1− q) γ] +
(

1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
[q + (1− q) γ] +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)


1
1−α
 (A.38)

A sufficient condition for ∂Γ(γ)
∂γ

> 0 is

pH

(
pH
pL

) α
1−α

 [q + (1− q) γ] +
(

1−δ
δ

)
(1− pL)

(
γ−ξ
1−ξ

)
[q + (1− q) γ] +

(
1−δ
δ

)
(1− pH)

(
γ−ξ
1−ξ

)


1
1−α

≤ 1. (A.39)

To show this, note that from the definition of k∗i the following is true αϕpi (k
∗
i )
α−1 =

[q + (1− q) γ] +
(

1−δ
δ

)
(1− pi)

(
γ−ξ
1−ξ

)
. Thus equation (A.39) can be rewritten as

pH

(
pH
pL

) α
1−α
(
αϕpL (k∗L)α−1

αϕpH (k∗H)α−1

) 1
1−α

≤ 1, (A.40)
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which simplifies to (
pL
pH

) 1
1−α k∗H

k∗L
≤ 1, (A.41)

which will always be satisfied as k∗H < k∗L and pL > pH .

Analysis of optimal policy with single firm type

Equation (28) yields a first order condition for the government’s optimal policy problem

when there is a single firm of type i. From equations(16) and (17) the derivatives of the

equilibrium contracts with respect to the parameter γ are as follows

dk∗i
dγ

= −
(

1

1− α

)(1− q) +
(

1−δ
δ

)
(1− pi)

(
1

1−ξ

)
piϕα [k∗i ]

α−1

 k∗i , (A.42)

dC∗i
dγ

=
1

δ

(
1

1− ξ

)(
α

1− α

)( 1
α

(q + (1− q) ξ)− piϕα [k∗i ]
α−1

piϕα [k∗i ]
α−1

)
k∗i . (A.43)

Substituting these derivatives into equation (28) yields the following

∂Ui
∂γ

= −
((

1− q
1− α

)
+

(
1− δ
δ

)
(1− pi)

(
1

1− ξ

))
k∗i

+

(
1− q
1− α

)(
1 +

(
1− δ
δ

)
(1− pi)

)
k∗i

piϕα [k∗i ]
α−1 . (A.44)

Thus the value of γ that sets the government’s first order condition to zero is such that

the marginal product of the project is given by the following equation

piϕα [k∗i ]
α−1 =

 1 +
(

1−δ
δ

)
(1− pi)

1 +
(

1−δ
δ

)
(1− pi)

(
1−α
1−q

)(
1

1−ξ

)
 . (A.45)

As the marginal product at the first best loan size is 1, it follows that the first best loan

size is achieved only if this will only occur if (q + (1− q) ξ) = α. Substituting equation

(17) into equation (A.45) and rearranging we can solve for the optimal γ as

γ = ξ +

 (1− q) (1− ξ) +
[
1− (1− α)

(
q+(1−q)ξ

(1−q)(1−ξ)

)] (
1−δ
δ

)
(1− pi)[

(1− q) +
(

1−η
η

)
(1− pi)

(
1

1−ξ

)] [
1 +

(
1−δ
δ

)
(1− pi)

(
1−α
1−q

)(
1

1−ξ

)]
 . (A.46)

It follows from the above that a sufficient condition for the government to impose a binding
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regulatory constraint such that γ > ξ is the following(
1− δ
δ

)[
1− (1− α)

(
q + (1− q) ξ

(1− q) (1− ξ)

)]
> 0. (A.47)

Analysis of optimal policy with two firm types

Equation (31)is the first order condition for the government’s optimal policy problem when

there are two firm types. As the high-risk firm will receive (k∗H , R
∗
H , C

∗
H), the derivatives

dk∗H
dγ

and
dC∗

H

dγ
are given by equations (A.42) and (A.43) respectively. The loan size for the

low risk firm depends on the value of ĈL relative to C̄L and the derivative of k̂L with

respect to ĈL is

∂k̂L

∂ĈL
=

δ
(

1−ξ
γ−ξ

)
if ĈL < C̄L

0 otherwise.
(A.48)

The value of ĈL can be found from combining equations [zp] and [IC] with the value of

k̂L defined in equation (30) such that ĈL must satisfy the following equation

ĈL =
1

δ


pH
pL

(
pLϕ

(
k̂L

)α−1

− (q + (1− q) ξ)
)
k̂L − π∗H

1− pH
pL

(q + (1− q) ξ) +
(

1−δ
δ

)
(1− pH)

 . (A.49)

The derivative
dC∗

H

dγ
can then be found by totally differentiating the above equation with

respect to γ.

In the first case where ĈL ≥ C̄L, the derivative is simply

dĈL
dγ

=
1

δ

 (1− q) +
(

1−δ
δ

)
(1− pH)

(
1

1−ξ

)
1−

(
pH
pL

)
(q + (1− q) ξ) +

(
1−δ
δ

)
(1− pH)

 k∗H , (A.50)

while in the case where ĈL < C̄L, the derivative becomes

dĈL
dγ

=
1

δ


[
(1− q) +

(
1−δ
δ

)
(1− pH)

(
1

1−ξ

)]
k∗H + ι1

1−
(
pH
pL

)
(q + (1− q) ξ) +

(
1−δ
δ

)
(1− pH)− ι2

 , (A.51)

where

ι1 ≡
(

1

γ − ξ

)(
pH
pL

)(
αpLϕ

(
k̂L

)α−1

− (q + (1− q) ξ)
)
k̂L, (A.52)

ι2 ≡
(
pH
pL

)(
αpLϕ

(
k̂L

)α−1

− (q + (1− q) ξ)
)(

1− ξ
γ − ξ

)
. (A.53)
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From equation (30) it follows that for any γ ∈ [ξ, 1) that αpLϕ
(
k̂L

)α−1

≥ (q + (1− q) ξ)
and thus ι1 > 0 and ι2 > 0. Furthermore, as the incentive compatibility constraint is

assumed to bind, it follows that

αpLϕ
(
k̂L

)α−1

≤ [q + (1− q) γ] +

(
1− δ
δ

)
(1− pL)

(
γ − ξ
1− ξ

)
, (A.54)

and thus

1−
(
pH
pL

)
(q + (1− q) ξ) +

(
1− δ
δ

)
(1− pH)− ι2 > 0. (A.55)

These two properties are enough to ensure that dCL
dγ

> 0.
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